direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content


Challenges in UAS-Based TIR Imagery Processing: Image Alignment and Uncertainty Quantification.
Citation key Doepper2020
Author Döpper, V. and Gränzig, T. and Kleinschmit, B. and Förster, M.
Pages 1-22
Year 2020
DOI https://doi.org/10.3390/rs12101552
Journal remote sensing
Volume 12
Number 1552
Abstract Thermal infrared measurements acquired with unmanned aerial systems (UAS) allow for high spatial resolution and flexibility in the time of image acquisition to assess ground surface temperature. Nevertheless, thermal infrared cameras mounted on UAS suffer from low radiometric accuracy as well as low image resolution and contrast hampering image alignment. Our analysis aims to determine the impact of the sun elevation angle (SEA), weather conditions, land cover, image contrast enhancement, geometric camera calibration, and inclusion of yaw angle information and generic and reference pre-selection methods on the point cloud and number of aligned images generated by Agisoft Metashape. We, therefore, use a total amount of 56 single data sets acquired on different days, times of day, weather conditions, and land cover types. Furthermore, we assess camera noise and the effect of temperature correction based on air temperature using features extracted by structure from motion. The study shows for the first time generalizable implications on thermal infrared image acquisitions and presents an approach to perform the analysis with a quality measure of inter-image sensor noise. Better image alignment is reached for conditions of high contrast such as clear weather conditions and high SEA. Alignment can be improved by applying a contrast enhancement and choosing both, reference and generic pre-selection. Grassland areas are best alignable, followed by cropland and forests. Geometric camera calibration hampers feature detection and matching. Temperature correction shows no effect on radiometric camera uncertainty.
Bibtex Type of Publication Kleinschmit
Link to original publication [1] Download Bibtex entry [2]

To top

Geoinformation in Environmental Planning Lab
Office EB5
Straße des 17. Juni 145
D - 10623 Berlin
Phone: +49 (0)30 314 - 73 29 0
Fax: +49 (0)30 314 - 23 50 7
e-mail query [4]
------ Links: ------

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions

This site uses Matomo for anonymized webanalysis. Visit Data Privacy for more information and opt-out options.
Copyright TU Berlin 2008