direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

Prof. Dr. Birgit Kleinschmit

Lupe

Head

Phone: +49 (0)30 / 314 - 72 84 7

Email:

Room: EB 235a
Consultation hour: by arrangement

Personal Data
Date and place of birth: 1973 (Münster, Westphalia, Germany)
Employment and academic vita
2011
Announced as University Professor and Head of the Department of Geoinformation in Environmental Planning at the Institute of Landscape Architecture and Environmental Planning of the Berlin University of Technology
2003-2011
Assistant Professor (“Juniorprofessorin”) at the Department of Geoinformation Processing for Landscape and Environmental Planning of the Berlin University of Technology
2001-2003
Consultant and software developer, INTEND Geoinformatik GmbH, Kassel, Germany
1998-2001
Scientific staff member ("Wissenschaftliche Mitarbeiterin"), Georg-August-Universität, Göttingen, Department of Forest Assessment & Remote Sensing, Forest Growth, Forest Planning
1993-1998
Diploma study of forest science at the University of Göttingen
Degrees
2001
Doctorate (doctor forest), Georg-August Universität Göttingen, Grade: magna cum laude
1998
Diploma, Georg-August Universität Göttingen, Grade: 1,9 (on a scale from 1 to 6, where 1 is highest)

Research Topics

    • Studying land use dynamics on different scales to understand natural and human environmental systems using geospatial information technologies (GIS & Remote Sensing)
    • Modelling environmental changes and assessing the impacts on humans and ecosystems
    • Knowledge-based combination of geoinformation and remote sensing data
    • Evaluating of new sensor technologies

      Important Functions, Awards, Honors

      • Since 2019     
        Member of Scientific Advisory Board on Forest Policy at the Federal Ministry of Food and Agriculture

      • Since 2019      
        Research Transfer advisory board Member, TU Berlin

      • Since 2018
        Deputy Director, Institute of Landscape Architecture and Environmental Planning, TU Berlin

      • Since 2015      
        Co-speaker of the DFG research training group Urban water interfaces

      • Since 2016      
        Admissions and Steering Committee member of the Berlin International Graduate School in Model and Simulation based Research (BIMoS), TU Berlin

      • 2012-2018        
        Leader of the Special Interest Group „Analysis of remote sensing data” of the German Association for Photogrammetry, Remote Sensing and Geoinformation

      • Since 2018      
        Member of the Commission for the Allocation of Doctoral Grants of Elsa Neumann Scholarships

      • Since 2010      
        Steering Committee member of Geo.X – Research Network for Geosciences in Berlin and Potsdam

      Articles

      The spatial dimension of urban greenhouse gas emissions: analyzing the influence of spatial structures and LULC patterns in European cities
      Citation key baur2015a
      Author Baur, A. H. and Förster, M. and Kleinschmit, B.
      Year 2015
      DOI 10.1007/s10980-015-0169-5
      Journal Landscape Ecology
      Publisher Springer
      Abstract Abstract Context Integrative mitigation and adaptation strategies are needed to counter climate change. Indicators can be valuable that focus on the specific relevance of cities’ socioeconomic and spatial properties. While previous analyses have identified socioeconomic influences on urban greenhouse gas emissions, information about the role of spatial urban structures and land use and land cover patterns is sparse. Objective This study advances the use of spatial metrics for analyzing the linkages between the spatial properties of a city and its greenhouse gas emissions. Methods The relationship between nine types of spatial structure, four land use and land cover-based indicators, and the emissions of 52 European cities is investigated by spatially and statistically analyzing high resolution data from European Union’s ‘‘Urban Atlas’’. Results Spatial determinants of urban greenhouse gas emissions are identified, indicating a strong connection between urban sprawl and increasing emissions. In particular, high amounts of sparsity in the urban fabric within large distances to the city center relate to increased per capita emissions. Thus, a 10 % reduction of very low density urban fabrics is correlated with 9 % fewer emissions per capita. In contrast, high amounts of fragmented, dense urban patches relate with lower emissions. Conclusions This study links urban spatial properties and land use and land cover compositions to greenhouse gas emissions and advances the understanding of urban sprawl. Future research needs to combine knowledge about socioeconomic drivers with information about the identified spatial influences of urban greenhouse gas emissions to help cities realize their climate change mitigation potential.
      Link to original publication Download Bibtex entry

      Other Publications

      2021

      Rocchini, D., Salvatori, N., Beierkuhnlein, C., Chiarucci, A., de Boissieu, F., Förster, M., Garzon-Lopez, C., Gillespie, T. W., Hauffe, H., He, K., Kleinschmit, B., Lenoir, J., Malavasi, M., Moudrý, V., Nagendra, H., Payne, D., Šímová, P., Torresani, M., Wegmann, M. and Féret, J.-B. (2021). From local spectral species to global spectral communities: A benchmark for ecosystem diversity estimate by remote sensing.. Ecological Informatics. Elsevier, 1-10.


      Hölzl, S. E., Veskov, M., Scheibner, T., Le, T. T. and Kleinschmit, B. (2021). Vulnerable socioeconomic groups are disproportionately exposed to multiple environmental burden in Berlin - implications– for planning. International journal of urban sustainable development, 1-18.


      Gränzig, T., Fassnacht, F. E., Kleinschmit, B. and Förster, M. (2021). Mapping the fractional coverage of the invasive shrub Ulex europaeus with multi-temporal Sentinel-2 imagery utilizing UAV orthoimages and a new spatial optimization approach.. International Journal of Applied Earth Observation and Geoinformation


      2020

      Vulova, S., Meier, F., Fenner, D., Nouri, H. and Kleinschmit, B. (2020). Summer Nights in Berlin, Germany: Modeling Air Temperature Spatially With Remote Sensing, Crowdsourced Weather Data, and Machine Learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1-15.


      Holtgrave, A., Röder, N., Ackermann, A., Erasmi, S. and Kleinschmit, B. (2020). Comparing Sentinel-1 and -2 Data and Indices for Agricultural Land Use Monitoring. remote sensing, 1-27.


      Fersch, B., Francke, T., Heistermann, M., Schrön, M., Döpper, V., Jakobi, J., Baroni, G., Blume, T., Bogena, H., Budach, C., Gränzig, T., Förster, M., Güntner, A., Hendricks Franssen, H., Kasner, M., Köhli, M., Kleinschmit, B., Kunstmann, H., Patil, A., Rasche, D., Scheiffele, L., Schmidt, U., Szulc-Seyfried, S., Weimar, J., Zacharias, S., Zreda, M., Heber, B., Kiese, R., Mares, V., Mollenhauer, H., Völksch, I. and Oswald, S. (2020). A dense network of cosmic-ray neutron sensors for soil moisture observation in a highly instrumented pre-Alpine headwater catchment in Germany. Earth System Science Data, 2289-2309.


      Döpper, V., Gränzig, T., Kleinschmit, B. and Förster, M. (2020). Challenges in UAS-Based TIR Imagery Processing: Image Alignment and Uncertainty Quantification.. remote sensing, 1-22.


      2019

      Vallentin, C., Dobers, E. S., Itzerott, S., Kleinschmit, B. and Spengler, D. (2019). Delineation of management zones with spatial data fusion and belief theory. Precision Agriculture. Springer, 1-29.


      Schulz, C. and Kleinschmit, B. (2019). Zentralasiatische Tugai-Auwälder – Ein gefährdetes Ökosystem. Auenmagazin, 11-17.


      2018

      Holtgrave, A.-K., Förster, M., Greifeneder, F., Notarnicola, C. and Kleinschmit, B. (2018). Estimation of Soil Moisture in Vegetation-Covered Floodplains with Sentinel-1 SAR Data Using Support Vector Regression. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 85–101.


      Zusatzinformationen / Extras

      Quick Access:

      Schnellnavigation zur Seite über Nummerneingabe

      Auxiliary Functions

      This site uses Matomo for anonymized webanalysis. Visit Data Privacy for more information and opt-out options.

      Geoinformation in Environmental Planning Lab
      Office EB5
      Straße des 17. Juni 145
      D - 10623 Berlin
      Phone: +49 (0)30 314 - 73 29 0
      Fax: +49 (0)30 314 - 23 50 7