TU Berlin

Geoinformation in Environmental PlanningKleinschmit, Birgit

Page Content

to Navigation

Prof. Dr. Birgit Kleinschmit

Lupe

Head

Phone: +49 (0)30 / 314 - 72 84 7

Email:

Room: EB 235a
Consultation hour: by arrangement

Personal Data
Date and place of birth: 1973 (Münster, Westphalia, Germany)
Employment and academic vita
2011
Announced as University Professor and Head of the Department of Geoinformation in Environmental Planning at the Institute of Landscape Architecture and Environmental Planning of the Berlin University of Technology
2003-2011
Assistant Professor (“Juniorprofessorin”) at the Department of Geoinformation Processing for Landscape and Environmental Planning of the Berlin University of Technology
2001-2003
Consultant and software developer, INTEND Geoinformatik GmbH, Kassel, Germany
1998-2001
Scientific staff member ("Wissenschaftliche Mitarbeiterin"), Georg-August-Universität, Göttingen, Department of Forest Assessment & Remote Sensing, Forest Growth, Forest Planning
1993-1998
Diploma study of forest science at the University of Göttingen
Degrees
2001
Doctorate (doctor forest), Georg-August Universität Göttingen, Grade: magna cum laude
1998
Diploma, Georg-August Universität Göttingen, Grade: 1,9 (on a scale from 1 to 6, where 1 is highest)

Research Topics

    • Studying land use dynamics on different scales to understand natural and human environmental systems using geospatial information technologies (GIS & Remote Sensing)
    • Modelling environmental changes and assessing the impacts on humans and ecosystems
    • Knowledge-based combination of geoinformation and remote sensing data
    • Evaluating of new sensor technologies

      Important Functions, Awards, Honors

      • Since 2019     
        Member of Scientific Advisory Board on Forest Policy at the Federal Ministry of Food and Agriculture

      • Since 2019      
        Research Transfer advisory board Member, TU Berlin

      • Since 2018
        Deputy Director, Institute of Landscape Architecture and Environmental Planning, TU Berlin

      • Since 2015      
        Co-speaker of the DFG research training group Urban water interfaces

      • Since 2016      
        Admissions and Steering Committee member of the Berlin International Graduate School in Model and Simulation based Research (BIMoS), TU Berlin

      • 2012-2018        
        Leader of the Special Interest Group „Analysis of remote sensing data” of the German Association for Photogrammetry, Remote Sensing and Geoinformation

      • Since 2018      
        Member of the Commission for the Allocation of Doctoral Grants of Elsa Neumann Scholarships

      • Since 2010      
        Steering Committee member of Geo.X – Research Network for Geosciences in Berlin and Potsdam

      Articles

      Evaluation of Remote-Sensing-Based Landslide Inventories for Hazard Assessment in Southern Kyrgyzstan
      Citation key Golovko2017
      Author Golovko, D. and Roessner, S. and Behling, R. and Wetzel, H.-U. and Kleinschmit, B.
      Pages 1-22
      Year 2017
      ISSN 2072-4292
      Journal Remote Sensing
      Volume 9
      Number 943
      Abstract Large areas in southern Kyrgyzstan are subjected to high and ongoing landslide activity; however, an objective and systematic assessment of landslide susceptibility at a regional level has not yet been conducted. In this paper, we investigate the contribution that remote sensing can provide to facilitate a quantitative landslide hazard assessment at a regional scale under the condition of data scarcity. We performed a landslide susceptibility and hazard assessment based on a multi-temporal landslide inventory that was derived from a 30-year time series of satellite remote sensing data using an automated identification approach. To evaluate the effect of the resulting inventory on the landslide susceptibility assessment, we calculated an alternative susceptibility model using a historical inventory that was derived by an expert through combining visual interpretation of remote sensing data with already existing knowledge on landslide activity in this region. For both susceptibility models, the same predisposing factors were used: geology, stream power index, absolute height, aspect and slope. A comparison of the two models revealed that using the multi-temporal landslide inventory covering the 30-year period results in model coefficients and susceptibility values that more strongly reflect the properties of the most recent landslide activity. Overall, both susceptibility maps present the highest susceptibility values for similar regions and are characterized by acceptable to high predictive performances. We conclude that the results of the automated landslide detection provide a suitable landslide inventory for a reliable large-area landslide susceptibility assessment. We also used the temporal information of the automatically detected multi-temporal landslide inventory to assess the temporal component of landslide hazard in the form of exceedance probability. The results show the great potential of satellite remote sensing for deriving detailed and systematic spatio-temporal information on landslide occurrences, which can significantly improve landslide susceptibility andhazard assessment at a regional scale, particularly in data-scarce regions such as Kyrgyzstan.
      Bibtex Type of Publication Kleinschmit
      Link to original publication Download Bibtex entry

      Other Publications

      2021

      Rocchini, D., Salvatori, N., Beierkuhnlein, C., Chiarucci, A., de Boissieu, F., Förster, M., Garzon-Lopez, C., Gillespie, T. W., Hauffe, H., He, K., Kleinschmit, B., Lenoir, J., Malavasi, M., Moudrý, V., Nagendra, H., Payne, D., Šímová, P., Torresani, M., Wegmann, M. and Féret, J.-B. (2021). From local spectral species to global spectral communities: A benchmark for ecosystem diversity estimate by remote sensing.. Ecological Informatics. Elsevier, 1-10.


      Hölzl, S. E., Veskov, M., Scheibner, T., Le, T. T. and Kleinschmit, B. (2021). Vulnerable socioeconomic groups are disproportionately exposed to multiple environmental burden in Berlin - implications– for planning. International journal of urban sustainable development, 1-18.


      Gränzig, T., Fassnacht, F. E., Kleinschmit, B. and Förster, M. (2021). Mapping the fractional coverage of the invasive shrub Ulex europaeus with multi-temporal Sentinel-2 imagery utilizing UAV orthoimages and a new spatial optimization approach.. International Journal of Applied Earth Observation and Geoinformation


      2020

      Vulova, S., Meier, F., Fenner, D., Nouri, H. and Kleinschmit, B. (2020). Summer Nights in Berlin, Germany: Modeling Air Temperature Spatially With Remote Sensing, Crowdsourced Weather Data, and Machine Learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1-15.


      Holtgrave, A., Röder, N., Ackermann, A., Erasmi, S. and Kleinschmit, B. (2020). Comparing Sentinel-1 and -2 Data and Indices for Agricultural Land Use Monitoring. remote sensing, 1-27.


      Fersch, B., Francke, T., Heistermann, M., Schrön, M., Döpper, V., Jakobi, J., Baroni, G., Blume, T., Bogena, H., Budach, C., Gränzig, T., Förster, M., Güntner, A., Hendricks Franssen, H., Kasner, M., Köhli, M., Kleinschmit, B., Kunstmann, H., Patil, A., Rasche, D., Scheiffele, L., Schmidt, U., Szulc-Seyfried, S., Weimar, J., Zacharias, S., Zreda, M., Heber, B., Kiese, R., Mares, V., Mollenhauer, H., Völksch, I. and Oswald, S. (2020). A dense network of cosmic-ray neutron sensors for soil moisture observation in a highly instrumented pre-Alpine headwater catchment in Germany. Earth System Science Data, 2289-2309.


      Döpper, V., Gränzig, T., Kleinschmit, B. and Förster, M. (2020). Challenges in UAS-Based TIR Imagery Processing: Image Alignment and Uncertainty Quantification.. remote sensing, 1-22.


      2019

      Vallentin, C., Dobers, E. S., Itzerott, S., Kleinschmit, B. and Spengler, D. (2019). Delineation of management zones with spatial data fusion and belief theory. Precision Agriculture. Springer, 1-29.


      Schulz, C. and Kleinschmit, B. (2019). Zentralasiatische Tugai-Auwälder – Ein gefährdetes Ökosystem. Auenmagazin, 11-17.


      2018

      Holtgrave, A.-K., Förster, M., Greifeneder, F., Notarnicola, C. and Kleinschmit, B. (2018). Estimation of Soil Moisture in Vegetation-Covered Floodplains with Sentinel-1 SAR Data Using Support Vector Regression. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 85–101.


      Navigation

      Quick Access

      Schnellnavigation zur Seite über Nummerneingabe