Page Content
Dr. Michael Förster
[1]
- © M. Förster
Senior
Scientist
Phone: +49 (0)30 / 314 - 72 79 8
Email: michael.foerster(at)tu-berlin.de [2]
Room:
EB 236b
Consultation hour: by arrangement
Date and place of birth: 1975
(Burgstädt, Saxony, Germany) |
2018 | Visiting
Scientist at the Joint Research Center (JRC) in Ispra,
Italy (Bioeconomy Unit) |
2012 | Visiting Scientist at the
University Utrecht, Netherlands (Department of Physical
Geography) |
2010 | Visiting
Scientist at the European Academy Bolzano
(EURAC), Italy (Institute for Applied Remote
Sensing) |
since
2009 | Post-doctoral Research Fellow Technische Universität Berlin, Institute of Landscape Architecture and Environmental Planning, Department of Geoinformation Processing for Landscape and Environmental Planning |
2003-2008 | Research
Scientist Technische Universität Berlin, Institute of Landscape Architecture and Environmental Planning, Department of Geoinformation Processing for Landscape and Environmental Planning |
2001-2003 | Consultant and
GIS-Coordinator Environmental Consulting and Planning Agency - Froelich & Sporbeck, Potsdam, Germany |
1999-2001 | Research
Associate Geo-Forschungs-Zentrum (GFZ) Potsdam, Section 1.4 (Remote Sensing) |
1998-1999 | Exchange Student
(ERASMUS) University of Southampton, UK |
1996-2003 | Studies of
Geoecology Universität Potsdam, Germany |
2003 | Diploma, University
of Potsdam Grade: 1,1 (on a scale from 1 to 6, where 1 is
highest) |
2009 | Doctorate,
Technische Universität Berlin, summa cum
laude |
Research Topics
- Development of methods to analyse the dynamics of ecosystems from time-series (optical and SAR), especially for degradation processes or abrupt damages (e.g. caused by fire or storms)
- Relation of temporal and spectral signals to plant traits and biophysical variables (xantophyll, nitrogen, chlorophyll and fluorescence)
- Derivation of operationalizable and comprehensive environmental indicators that are needed for the effective implementation of management measures (e.g. within the framework of the European NATURA 2000 requirements) or for a better understanding of ecosystems
- Interaction of vegetation structure, which can be measured with LiDAR or SAR, with spectral information for the evaluation of forest properties
- Combining spatially very high resolution data (drones) with satellite data to understand ecohydrological processes and especially to derive hydrological variables such as soil moisture content or interception
Other Publications
Citation key | Kattenborn20190 |
---|---|
Author | Kattenborn, T. and Lopatina, J. and Förster, M. and Braun, A. C. and Fassnacht, F. E. |
Pages | 61-73 |
Year | 2019 |
Journal | Remote Sensing of Environment |
Volume | 227 |
Number | 2019 |
Abstract | Invasive plant species can pose major threats to biodiversity, ecosystem functioning and services. Satellite based remote sensing has evolved as an important technology to spatially map the occurrence of invasive species in space and time. With the new era of the Sentinel missions, Synthetic Aperture Radar (SAR) and multispectral data are now freely available and repeatedly acquired on a high spatial and temporal resolution for the entire globe. However, the high potential of such sensors for automatic mapping procedures cannot be fully harnessed without sufficient and appropriate reference data for model calibration. Reference data are commonly acquired in field surveys, which however, are often relatively expensive and affected by sampling and observer bias. Moreover, a direct transferability to the remote sensing perspective and scale is difficult. Accordingly, we firstly assess the potential of Unmanned Aerial Vehicles (UAV) for semi-automatic reference data acquisition on species cover of three woody invasive species Pinus radiata, Ulex europaeus and Acacia dealbata occurring in Chile. Secondly, we test the upscaling of the estimated species cover to the spatial scale of Sentinel-1 and Sentinel-2. The proposed workflow includes the visual sampling of respective canopies in UAV orthomosaics and the subsequent spatial extrapolations using MaxEnt with spectral (RGB, Hyperspectral), textural (2D) and canopy structural (3D) predictors derived from UAV-based photogrammetry. These UAV-based maps are then used to train random forest models with multitemporal Sentinel-1 and Sentinel-2 data to map the invasive species cover on large spatial scales. Our results show that the semi-automatic UAV-based mapping of the three invasive species results in accurate predictions. Depending on the predictor combination, the correlation was 0.70, 0.77 and 0.90 for Pinus radiatia, Ulex europaeus, Acacia dealbata, respectively. Among the three species, we observed clear differences in the model performance between the tested photogrammetric predictors and their combinations (spectral, 2D texture or 3D structure). For scaling up the UAV-based estimates to the satellite-scale, the Sentinel-2 data (multispectral) were more important than Sentinel-1 data (SAR). An independent validation revealed that the R2 of the upscaling accounted for 0.78 or higher for all species and RMSE lower than 12%. Our results hence demonstrate that UAV-based reference data acquisitions are a promising alternative to traditional field surveys if the target species are directly identifiable in the UAV data. |
Back [31]

Fachgebiet Geoinformation in der
Umweltplanung
Sekretariat EB5
Room EB 236a
Straße des 17. Juni 145
D - 10623 Berlin
Tel.: +49 (0)30 314 - 73 29 0
Fax: +49 (0)30 314 - 23 50 7
e-mail query [32]
Sekretariat EB5
Room EB 236a
Straße des 17. Juni 145
D - 10623 Berlin
Tel.: +49 (0)30 314 - 73 29 0
Fax: +49 (0)30 314 - 23 50 7
e-mail query [32]
242/passbild_foerster.jpg
parameter/en/maxhilfe/id/84343/?no_cache=1&ask_mail
=YsWLPQAO6yyf6ZhOMOvtCbdL2EXiRkvHdhlw%2FQ%2FTTtMl124wrp
4obw%3D%3D&ask_name=MICHAEL%20FOERSTER
le_and_current/staff/foerster_michael/parameter/en/maxh
ilfe/?showp=2&tx_sibibtex_pi1%5Bsort%5D=year%3A1&am
p;cHash=d582847b4786562fa14bb4ef4ec1d759
le_and_current/staff/foerster_michael/parameter/en/maxh
ilfe/?showp=3&tx_sibibtex_pi1%5Bsort%5D=year%3A1&am
p;cHash=b0cc120048bd875ff28208b56cce6454
le_and_current/staff/foerster_michael/parameter/en/maxh
ilfe/?showp=4&tx_sibibtex_pi1%5Bsort%5D=year%3A1&am
p;cHash=59a75618f86eb419502d718dc6ce7572
le_and_current/staff/foerster_michael/parameter/en/maxh
ilfe/?showp=5&tx_sibibtex_pi1%5Bsort%5D=year%3A1&am
p;cHash=c2b2b6ae03535655693b2c504efc0395
le_and_current/staff/foerster_michael/parameter/en/maxh
ilfe/?showp=2&tx_sibibtex_pi1%5Bsort%5D=year%3A1&am
p;cHash=d582847b4786562fa14bb4ef4ec1d759
le_and_current/staff/foerster_michael/parameter/en/maxh
ilfe/?tx_sibibtex_pi1%5Bcontentelement%5D=tt_content%3A
280599&tx_sibibtex_pi1%5BshowUid%5D=14917305&cH
ash=9dd6077988f69c7aeb7a527767f5a4ad
ile_and_current/staff/foerster_michael/parameter/en/max
hilfe/?tx_sibibtex_pi1%5Bcontentelement%5D=tt_content%3
A280599&tx_sibibtex_pi1%5BshowUid%5D=10461989&c
Hash=5f0e3d7b48c4cab0ab307807e65228e0
.2020.101195
ile_and_current/staff/foerster_michael/parameter/en/max
hilfe/?tx_sibibtex_pi1%5Bcontentelement%5D=tt_content%3
A280599&tx_sibibtex_pi1%5BshowUid%5D=10745230&c
Hash=e6de964359f871b2e5003c9adc69b5e4
ile_and_current/staff/foerster_michael/parameter/en/max
hilfe/?tx_sibibtex_pi1%5Bcontentelement%5D=tt_content%3
A280599&tx_sibibtex_pi1%5BshowUid%5D=10263849&c
Hash=3aff7a5cebf1d75b4c09c5c68b72c272
2289-2020
ile_and_current/staff/foerster_michael/parameter/en/max
hilfe/?tx_sibibtex_pi1%5Bcontentelement%5D=tt_content%3
A280599&tx_sibibtex_pi1%5BshowUid%5D=5317935&cH
ash=ac6532745af0eb87d484364d9f62d34a
19.102036
ile_and_current/staff/foerster_michael/parameter/en/max
hilfe/?tx_sibibtex_pi1%5Bcontentelement%5D=tt_content%3
A280599&tx_sibibtex_pi1%5BshowUid%5D=8934534&cH
ash=9a63922251a37a141a19d61db7050096
52
ile_and_current/staff/foerster_michael/parameter/en/max
hilfe/?tx_sibibtex_pi1%5Bcontentelement%5D=tt_content%3
A280599&tx_sibibtex_pi1%5BshowUid%5D=2494251&cH
ash=64f531e50531c381f2a6b2b6c6406a4e
ile_and_current/staff/foerster_michael/parameter/en/max
hilfe/?tx_sibibtex_pi1%5Bcontentelement%5D=tt_content%3
A280599&tx_sibibtex_pi1%5BshowUid%5D=1505539&cH
ash=fa476cb05347a38aba171be4724e76e7
ile_and_current/staff/foerster_michael/parameter/en/max
hilfe/?tx_sibibtex_pi1%5Bcontentelement%5D=tt_content%3
A280599&tx_sibibtex_pi1%5BshowUid%5D=1505540&cH
ash=07957d867e8738771b5c372c22c82d21
ile_and_current/staff/foerster_michael/parameter/en/max
hilfe/?tx_sibibtex_pi1%5Bcontentelement%5D=tt_content%3
A280599&tx_sibibtex_pi1%5BshowUid%5D=1267746&cH
ash=da5adc186954c1d315df231be307771e
ile_and_current/staff/foerster_michael/parameter/en/max
hilfe/?showp=2&tx_sibibtex_pi1%5Bsort%5D=year%3A1&a
mp;cHash=d582847b4786562fa14bb4ef4ec1d759
ile_and_current/staff/foerster_michael/parameter/en/max
hilfe/?showp=3&tx_sibibtex_pi1%5Bsort%5D=year%3A1&a
mp;cHash=b0cc120048bd875ff28208b56cce6454
ile_and_current/staff/foerster_michael/parameter/en/max
hilfe/?showp=4&tx_sibibtex_pi1%5Bsort%5D=year%3A1&a
mp;cHash=59a75618f86eb419502d718dc6ce7572
ile_and_current/staff/foerster_michael/parameter/en/max
hilfe/?showp=5&tx_sibibtex_pi1%5Bsort%5D=year%3A1&a
mp;cHash=c2b2b6ae03535655693b2c504efc0395
ile_and_current/staff/foerster_michael/parameter/en/max
hilfe/?showp=2&tx_sibibtex_pi1%5Bsort%5D=year%3A1&a
mp;cHash=d582847b4786562fa14bb4ef4ec1d759
ile_and_current/staff/foerster_michael/parameter/en/max
hilfe/?no_cache=1&tx_sibibtex_pi1%5Bdownload_bibtex
_uid%5D=2494251&tx_sibibtex_pi1%5Bcontentelement%5D
=tt_content%3A535511
ile_and_current/staff/foerster_michael/parameter/en/max
hilfe/
/parameter/en/maxhilfe/id/84343/?no_cache=1&ask_mai
l=YsWLPgADOxnZh4JUjZEIoIL9098KIJHt1lzEXM3ivERouNefKFCJ2
y1f0hLN9Yef&ask_name=Fachgebiet%20Geoinformation%20
in%20der%20Umweltplanung
Zusatzinformationen / Extras
Quick Access:
Schnellnavigation zur Seite über Nummerneingabe
Auxiliary Functions
This site uses Matomo for anonymized webanalysis. Visit Data Privacy for more information and opt-out options.
Copyright TU Berlin 2008