direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

Dr. Michael Förster

Lupe

Senior Scientist

Phone: +49 (0)30 / 314 - 72 79 8

Email:

Room: EB 236b
Consultation hour: by arrangement

Personal Data
Date and place of birth: 1975 (Burgstädt, Saxony, Germany)
Employment and academic vita
2018
Visiting Scientist at the Joint Research Center (JRC) in Ispra, Italy (Bioeconomy Unit)
2012
Visiting Scientist at the University Utrecht, Netherlands (Department of Physical Geography)
2010
Visiting Scientist at the European Academy Bolzano (EURAC), Italy (Institute for Applied Remote Sensing)
since 2009
Post-doctoral Research Fellow
Technische Universität Berlin, Institute of Landscape Architecture and Environmental Planning, Department of Geoinformation Processing for Landscape and Environmental Planning
2003-2008
Research Scientist
Technische Universität Berlin, Institute of Landscape Architecture and Environmental Planning, Department of Geoinformation Processing for Landscape and Environmental Planning
2001-2003
Consultant and GIS-Coordinator
Environmental Consulting and Planning Agency - Froelich & Sporbeck, Potsdam, Germany
1999-2001
Research Associate
Geo-Forschungs-Zentrum (GFZ) Potsdam, Section 1.4 (Remote Sensing)
1998-1999
Exchange Student (ERASMUS)
University of Southampton, UK
1996-2003
Studies of Geoecology
Universität Potsdam, Germany
Degrees
2003
Diploma, University of Potsdam Grade: 1,1 (on a scale from 1 to 6, where 1 is highest)
2009
Doctorate, Technische Universität Berlin, summa cum laude

Research Topics

  • Development of methods to analyse the dynamics of ecosystems from time-series (optical and SAR), especially for degradation processes or abrupt damages (e.g. caused by fire or storms)
  • Relation of temporal and spectral signals to plant traits and biophysical variables (xantophyll, nitrogen, chlorophyll and fluorescence)
  • Derivation of operationalizable and comprehensive environmental indicators that are needed for the effective implementation of management measures (e.g. within the framework of the European NATURA 2000 requirements) or for a better understanding of ecosystems
  • Interaction of vegetation structure, which can be measured with LiDAR or SAR, with spectral information for the evaluation of forest properties
  • Combining spatially very high resolution data (drones) with satellite data to understand ecohydrological processes and especially to derive hydrological variables such as soil moisture content or interception

Articles

Challenges in UAS-Based TIR Imagery Processing: Image Alignment and Uncertainty Quantification.
Citation key Doepper2020
Author Döpper, V. and Gränzig, T. and Kleinschmit, B. and Förster, M.
Year 2020
DOI https://doi.org/10.3390/rs12101552
Journal remote sensing
Volume 12
Number 10
Abstract Thermal infrared measurements acquired with unmanned aerial systems (UAS) allow for high spatial resolution and flexibility in the time of image acquisition to assess ground surface temperature. Nevertheless, thermal infrared cameras mounted on UAS suffer from low radiometric accuracy as well as low image resolution and contrast hampering image alignment. Our analysis aims to determine the impact of the sun elevation angle (SEA), weather conditions, land cover, image contrast enhancement, geometric camera calibration, and inclusion of yaw angle information and generic and reference pre-selection methods on the point cloud and number of aligned images generated by Agisoft Metashape. We, therefore, use a total amount of 56 single data sets acquired on different days, times of day, weather conditions, and land cover types. Furthermore, we assess camera noise and the effect of temperature correction based on air temperature using features extracted by structure from motion. The study shows for the first time generalizable implications on thermal infrared image acquisitions and presents an approach to perform the analysis with a quality measure of inter-image sensor noise. Better image alignment is reached for conditions of high contrast such as clear weather conditions and high SEA. Alignment can be improved by applying a contrast enhancement and choosing both, reference and generic pre-selection. Grassland areas are best alignable, followed by cropland and forests. Geometric camera calibration hampers feature detection and matching. Temperature correction shows no effect on radiometric camera uncertainty.
Bibtex Type of Publication Kleinschmit
Link to original publication Download Bibtex entry

Other Publications

2020

Fenske, K., Feilhauer, H., Förster, M., Stellmes, M. and Waske, B. (2020): Hierarchical classification with subsequent aggregation of heathland habitats using an intra-annual RapidEye time-series. International Journal of Applied Earth Observation and Geoinformation, 87, pp. 1-13. doi: https://doi.org/10.1016/j.jag.2019.102036


Döpper, V., Gränzig, T., Kleinschmit, B. and Förster, M. (2020): Challenges in UAS-Based TIR Imagery Processing: Image Alignment and Uncertainty Quantification.. remote sensing, 12(10). doi: https://doi.org/10.3390/rs12101552


2019

Kattenborn, T., Lopatina, J., Förster, M., Braun, A. C. and Fassnacht, F. E. (2019): UAV data as alternative to field sampling to map woody invasive species based on combined Sentinel-1 and Sentinel-2 data. Remote Sensing of Environment, 227(2019), pp. 61-73.


2018

Holtgrave, A.-K., Förster, M., Greifeneder, F., Notarnicola, C. and Kleinschmit, B. (2018): Estimation of Soil Moisture in Vegetation-Covered Floodplains with Sentinel-1 SAR Data Using Support Vector Regression. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2018, pp. 85–101.


Klinke, R., Kuechly, H., Frick, A., Förster, M., Schmidt, T., Holtgrave, A.-K. a. K. B., Spengler, D. and Neumann, C. (2018): Indicator-Based Soil Moisture Monitoring ofWetlands by Utilizing Sentinel and Landsat Remote Sensing Data. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2018, pp. 71–84.


2017


Schmidt, J., Fassnacht, F. E., Neff, C., Lausch, A., Kleinschmit, B., Förster, M. and Schmidtlein, S. (2017): Adapting a Natura 2000 field guideline for a remote sensing-based assessment of heathland conservation status. International Journal of Applied Earth Observation and Geoinformation, 60, pp. 61-71. doi: http://dx.doi.org/10.1016/j.jag.2017.04.005


2016

Gärtner, P., Förster, M. and Kleinschmit, B. (2016): The benefit of synthetically generated RapidEye and Landsat 8 data fusion time series for riparian forest disturbance monitoring. Remote Sensing of Environment, 2016(177), pp. 237-247. doi: doi:10.1016/j.rse.2016.01.028


2015

Baur, A. H., Lauf, S., Förster, M. and Kleinschmit, B. (2015): Estimating greenhouse gas emissions of European cities — Modeling emissions with only one spatial and one socioeconomic variable. Science of the Total Environment, 2015(520), pp. 49-58. doi: 10.1016/j.scitotenv.2015.03.030


Rocchini, D., Andreo, V., Förster, M., Gutierrez, A., Gillespie, W., Hauffe, H., He, K., Kleinschmit, B., Mairota, P., Marcantonio, M., Metz, M., Nagendra, H., Pareeth, S., Ponti, L., Ricotta, C., Rizzoli, A., Schaab, G., Zebisch, M., Zorer, R. and Neteler, M. (2015): Potential of remote sensing to predict species invasions: A modelling perspective. Progress in Physical Geography, 39(3), pp. 283-309. doi: 10.1177/0309133315574659


Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions

This site uses Matomo for anonymized webanalysis. Visit Data Privacy for more information and opt-out options.

Fachgebiet Geoinformation in der Umweltplanung
Sekretariat EB5
Room EB 236a
Straße des 17. Juni 145
D - 10623 Berlin
Tel.: +49 (0)30 314 - 73 29 0
Fax: +49 (0)30 314 - 23 50 7