direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

Dr. Michael Förster

Lupe

Senior Scientist

Phone: +49 (0)30 / 314 - 72 79 8

Email:

Room: EB 236b
Consultation hour: by arrangement

Personal Data
Date and place of birth: 1975 (Burgstädt, Saxony, Germany)
Employment and academic vita
2018
Visiting Scientist at the Joint Research Center (JRC) in Ispra, Italy (Bioeconomy Unit)
2012
Visiting Scientist at the University Utrecht, Netherlands (Department of Physical Geography)
2010
Visiting Scientist at the European Academy Bolzano (EURAC), Italy (Institute for Applied Remote Sensing)
since 2009
Post-doctoral Research Fellow
Technische Universität Berlin, Institute of Landscape Architecture and Environmental Planning, Department of Geoinformation Processing for Landscape and Environmental Planning
2003-2008
Research Scientist
Technische Universität Berlin, Institute of Landscape Architecture and Environmental Planning, Department of Geoinformation Processing for Landscape and Environmental Planning
2001-2003
Consultant and GIS-Coordinator
Environmental Consulting and Planning Agency - Froelich & Sporbeck, Potsdam, Germany
1999-2001
Research Associate
Geo-Forschungs-Zentrum (GFZ) Potsdam, Section 1.4 (Remote Sensing)
1998-1999
Exchange Student (ERASMUS)
University of Southampton, UK
1996-2003
Studies of Geoecology
Universität Potsdam, Germany
Degrees
2003
Diploma, University of Potsdam Grade: 1,1 (on a scale from 1 to 6, where 1 is highest)
2009
Doctorate, Technische Universität Berlin, summa cum laude

Research Topics

  • Development of methods to analyse the dynamics of ecosystems from time-series (optical and SAR), especially for degradation processes or abrupt damages (e.g. caused by fire or storms)
  • Relation of temporal and spectral signals to plant traits and biophysical variables (xantophyll, nitrogen, chlorophyll and fluorescence)
  • Derivation of operationalizable and comprehensive environmental indicators that are needed for the effective implementation of management measures (e.g. within the framework of the European NATURA 2000 requirements) or for a better understanding of ecosystems
  • Interaction of vegetation structure, which can be measured with LiDAR or SAR, with spectral information for the evaluation of forest properties
  • Combining spatially very high resolution data (drones) with satellite data to understand ecohydrological processes and especially to derive hydrological variables such as soil moisture content or interception

Articles

The benefit of synthetically generated RapidEye and Landsat 8 data fusion time series for riparian forest disturbance monitoring
Citation key Gaertner2016
Author Gärtner, P. and Förster, M. and Kleinschmit, B.
Pages 237-247
Year 2016
DOI doi:10.1016/j.rse.2016.01.028
Journal Remote Sensing of Environment
Volume 2016
Number 177
Month Januar
Publisher Elsevier
Abstract Insect defoliation causes forest disturbances with complex spatial dynamics. In order to monitor affected areas, decision makers seek but often lack information with high spatial and temporal precision. Within the context of a riparian Tugai forest disturbed by the insect Apocheima cinerarius, this study examines whether the analysis of a RapidEye time series would benefit from the availability of synthetically generated images at the spatial resolution of RapidEye and the additional temporal resolution of Landsat 8. We applied the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) to downscale Landsat 8 Normalized Difference Vegetation Index (NDVI) scenes to concurrent RapidEye NDVI scenes.We a) performed a pixel-based regression analyses in order to evaluate the quality of the synthetically created NDVI products and b) examined if forest disturbance maps producedwith synthetic images improve the accuracy of disturbance detection. The results show that the ESTARFM predictions have a sufficiently good accuracy, with a correlation coefficient between 0.878 b r b 0.919 (p b 0.001) and an average root mean square error 0.015 b RMSE b 0.024. The overall accuracy of forest disturbance detection with added synthetic images increased from 42.8% to 61.1 & 65.7% compared to the original data set. Forest recovery detection accuracy improved from 59.5% to 80.9%. The main source of error in the disturbance analysis occurs during the temporal interweaving between foliation and defoliation in spring.
Link to original publication Download Bibtex entry

Other Publications

2019

Kattenborn, T., Lopatina, J., Förster, M., Braun, A. C. and Fassnacht, F. E. (2019): UAV data as alternative to field sampling to map woody invasive species based on combined Sentinel-1 and Sentinel-2 data. Remote Sensing of Environment, 227(2019), pp. 61-73.


2018

Holtgrave, A.-K., Förster, M., Greifeneder, F., Notarnicola, C. and Kleinschmit, B. (2018): Estimation of Soil Moisture in Vegetation-Covered Floodplains with Sentinel-1 SAR Data Using Support Vector Regression. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2018, pp. 85–101.


Klinke, R., Kuechly, H., Frick, A., Förster, M., Schmidt, T., Holtgrave, A.-K. a. K. B., Spengler, D. and Neumann, C. (2018): Indicator-Based Soil Moisture Monitoring ofWetlands by Utilizing Sentinel and Landsat Remote Sensing Data. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2018, pp. 71–84.


2017


Schmidt, J., Fassnacht, F. E., Neff, C., Lausch, A., Kleinschmit, B., Förster, M. and Schmidtlein, S. (2017): Adapting a Natura 2000 field guideline for a remote sensing-based assessment of heathland conservation status. International Journal of Applied Earth Observation and Geoinformation, 60, pp. 61-71. doi: http://dx.doi.org/10.1016/j.jag.2017.04.005


2016

Gärtner, P., Förster, M. and Kleinschmit, B. (2016): The benefit of synthetically generated RapidEye and Landsat 8 data fusion time series for riparian forest disturbance monitoring. Remote Sensing of Environment, 2016(177), pp. 237-247. doi: doi:10.1016/j.rse.2016.01.028


2015

Baur, A. H., Lauf, S., Förster, M. and Kleinschmit, B. (2015): Estimating greenhouse gas emissions of European cities — Modeling emissions with only one spatial and one socioeconomic variable. Science of the Total Environment, 2015(520), pp. 49-58. doi: 10.1016/j.scitotenv.2015.03.030


Rocchini, D., Andreo, V., Förster, M., Gutierrez, A., Gillespie, W., Hauffe, H., He, K., Kleinschmit, B., Mairota, P., Marcantonio, M., Metz, M., Nagendra, H., Pareeth, S., Ponti, L., Ricotta, C., Rizzoli, A., Schaab, G., Zebisch, M., Zorer, R. and Neteler, M. (2015): Potential of remote sensing to predict species invasions: A modelling perspective. Progress in Physical Geography, 39(3), pp. 283-309. doi: 10.1177/0309133315574659


Nieland, S., Moran, N., Kleinschmit, B. and Förster, M. (2015): An ontological system for interoperable spatial generalisation in biodiversity monitoring. Computers & Geosciences, 84, pp. 86-95. doi: 10.1016/j.cageo.2015.08.006



Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions

This site uses Matomo for anonymized webanalysis. Visit Data Privacy for more information and opt-out options.

Fachgebiet Geoinformation in der Umweltplanung
Sekretariat EB5
Room EB 236a
Straße des 17. Juni 145
D - 10623 Berlin
Tel.: +49 (0)30 314 - 73 29 0
Fax: +49 (0)30 314 - 23 50 7