Page Content
Dr. Michael Förster
Senior Scientist
Phone: +49 (0)30 / 314 - 72 79 8
Email: michael.foerster(at)tu-berlin.de
Room: EB 236b
Consultation hour: by arrangement
Date and place of birth: 1975 (Burgstädt, Saxony, Germany) |
2018 | Visiting Scientist at the Joint Research Center (JRC) in Ispra, Italy (Bioeconomy Unit) |
2012 | Visiting Scientist at the University Utrecht, Netherlands (Department of Physical Geography) |
2010 | Visiting Scientist at the European Academy Bolzano (EURAC), Italy (Institute for Applied Remote Sensing) |
since 2009 | Post-doctoral Research Fellow Technische Universität Berlin, Institute of Landscape Architecture and Environmental Planning, Department of Geoinformation Processing for Landscape and Environmental Planning |
2003-2008 | Research Scientist Technische Universität Berlin, Institute of Landscape Architecture and Environmental Planning, Department of Geoinformation Processing for Landscape and Environmental Planning |
2001-2003 | Consultant and GIS-Coordinator Environmental Consulting and Planning Agency - Froelich & Sporbeck, Potsdam, Germany |
1999-2001 | Research Associate Geo-Forschungs-Zentrum (GFZ) Potsdam, Section 1.4 (Remote Sensing) |
1998-1999 | Exchange Student (ERASMUS) University of Southampton, UK |
1996-2003 | Studies of Geoecology Universität Potsdam, Germany |
2003 | Diploma, University of Potsdam Grade: 1,1 (on a scale from 1 to 6, where 1 is highest) |
2009 | Doctorate, Technische Universität Berlin, summa cum laude |
Research Topics
- Development of methods to analyse the dynamics of ecosystems from time-series (optical and SAR), especially for degradation processes or abrupt damages (e.g. caused by fire or storms)
- Relation of temporal and spectral signals to plant traits and biophysical variables (xantophyll, nitrogen, chlorophyll and fluorescence)
- Derivation of operationalizable and comprehensive environmental indicators that are needed for the effective implementation of management measures (e.g. within the framework of the European NATURA 2000 requirements) or for a better understanding of ecosystems
- Interaction of vegetation structure, which can be measured with LiDAR or SAR, with spectral information for the evaluation of forest properties
- Combining spatially very high resolution data (drones) with satellite data to understand ecohydrological processes and especially to derive hydrological variables such as soil moisture content or interception
Articles
Citation key | Gaertner2016 |
---|---|
Author | Gärtner, P. and Förster, M. and Kleinschmit, B. |
Pages | 237-247 |
Year | 2016 |
DOI | doi:10.1016/j.rse.2016.01.028 |
Journal | Remote Sensing of Environment |
Volume | 2016 |
Number | 177 |
Month | Januar |
Publisher | Elsevier |
Abstract | Insect defoliation causes forest disturbances with complex spatial dynamics. In order to monitor affected areas, decision makers seek but often lack information with high spatial and temporal precision. Within the context of a riparian Tugai forest disturbed by the insect Apocheima cinerarius, this study examines whether the analysis of a RapidEye time series would benefit from the availability of synthetically generated images at the spatial resolution of RapidEye and the additional temporal resolution of Landsat 8. We applied the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) to downscale Landsat 8 Normalized Difference Vegetation Index (NDVI) scenes to concurrent RapidEye NDVI scenes.We a) performed a pixel-based regression analyses in order to evaluate the quality of the synthetically created NDVI products and b) examined if forest disturbance maps producedwith synthetic images improve the accuracy of disturbance detection. The results show that the ESTARFM predictions have a sufficiently good accuracy, with a correlation coefficient between 0.878 b r b 0.919 (p b 0.001) and an average root mean square error 0.015 b RMSE b 0.024. The overall accuracy of forest disturbance detection with added synthetic images increased from 42.8% to 61.1 & 65.7% compared to the original data set. Forest recovery detection accuracy improved from 59.5% to 80.9%. The main source of error in the disturbance analysis occurs during the temporal interweaving between foliation and defoliation in spring. |
Zusatzinformationen / Extras
Quick Access:
Schnellnavigation zur Seite über Nummerneingabe
Auxiliary Functions
This site uses Matomo for anonymized webanalysis. Visit Data Privacy for more information and opt-out options.

Fachgebiet Geoinformation in der Umweltplanung
Sekretariat EB5
Room EB 236a
Straße des 17. Juni 145
D - 10623 Berlin
Tel.: +49 (0)30 314 - 73 29 0
Fax: +49 (0)30 314 - 23 50 7
e-mail query
Sekretariat EB5
Room EB 236a
Straße des 17. Juni 145
D - 10623 Berlin
Tel.: +49 (0)30 314 - 73 29 0
Fax: +49 (0)30 314 - 23 50 7
e-mail query