direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

Dr. Michael Förster

Lupe

Senior Scientist

Phone: +49 (0)30 / 314 - 72 79 8

Email:

Room: EB 236b
Consultation hour: by arrangement

Personal Data
Date and place of birth: 1975 (Burgstädt, Saxony, Germany)
Employment and academic vita
2018
Visiting Scientist at the Joint Research Center (JRC) in Ispra, Italy (Bioeconomy Unit)
2012
Visiting Scientist at the University Utrecht, Netherlands (Department of Physical Geography)
2010
Visiting Scientist at the European Academy Bolzano (EURAC), Italy (Institute for Applied Remote Sensing)
since 2009
Post-doctoral Research Fellow
Technische Universität Berlin, Institute of Landscape Architecture and Environmental Planning, Department of Geoinformation Processing for Landscape and Environmental Planning
2003-2008
Research Scientist
Technische Universität Berlin, Institute of Landscape Architecture and Environmental Planning, Department of Geoinformation Processing for Landscape and Environmental Planning
2001-2003
Consultant and GIS-Coordinator
Environmental Consulting and Planning Agency - Froelich & Sporbeck, Potsdam, Germany
1999-2001
Research Associate
Geo-Forschungs-Zentrum (GFZ) Potsdam, Section 1.4 (Remote Sensing)
1998-1999
Exchange Student (ERASMUS)
University of Southampton, UK
1996-2003
Studies of Geoecology
Universität Potsdam, Germany
Degrees
2003
Diploma, University of Potsdam Grade: 1,1 (on a scale from 1 to 6, where 1 is highest)
2009
Doctorate, Technische Universität Berlin, summa cum laude

Research Topics

  • Development of methods to analyse the dynamics of ecosystems from time-series (optical and SAR), especially for degradation processes or abrupt damages (e.g. caused by fire or storms)
  • Relation of temporal and spectral signals to plant traits and biophysical variables (xantophyll, nitrogen, chlorophyll and fluorescence)
  • Derivation of operationalizable and comprehensive environmental indicators that are needed for the effective implementation of management measures (e.g. within the framework of the European NATURA 2000 requirements) or for a better understanding of ecosystems
  • Interaction of vegetation structure, which can be measured with LiDAR or SAR, with spectral information for the evaluation of forest properties
  • Combining spatially very high resolution data (drones) with satellite data to understand ecohydrological processes and especially to derive hydrological variables such as soil moisture content or interception

Articles

Spectral Unmixing of Forest Crown Components at Close Range, Airborne and Simulated Sentinel-2 and EnMAP Spectral Imaging Scale
Citation key Clasen2015
Author Clasen, A. and Somers, B. and Pipkins, K. and Tits, L. and Segl, K. and Brell, M. and Kleinschmit, B. and Spengler, D. and Lausch, A. and Förster, M.
Pages 26
Year 2015
ISSN 2072-4292
DOI 10.3390/rs71115361
Journal remote sensing
Volume 2015
Number 7
Month November
Abstract Forest biochemical and biophysical variables and their spatial and temporal distribution are essential inputs to process-orientated ecosystem models. To provide this information, imaging spectroscopy appears to be a promising tool. In this context, the present study investigates the potential of spectral unmixing to derive sub-pixel crown component fractions in a temperate deciduous forest ecosystem. However, the high proportion of foliage in this complex vegetation structure leads to the problem of saturation effects, when applying broadband vegetation indices. This study illustrates that multiple endmember spectral mixture analysis (MESMA) can contribute to overcoming this challenge. Reference fractional abundances, as well as spectral measurements of the canopy components, could be precisely determined from a crane measurement platform situated in a deciduous forest in North-East Germany. In contrast to most other studies, which only use leaf and soil endmembers, this experimental setup allowed for the inclusion of a bark endmember for the unmixing of components within the canopy. This study demonstrates that the inclusion of additional endmembers markedly improves the accuracy. A mean absolute error of 7.9% could be achieved for the fractional occurrence of the leaf endmember and 5.9% for the bark endmember. In order to evaluate the results of this field-based study for airborne and satellite-based remote sensing applications, a transfer to Airborne Imaging Spectrometer for Applications (AISA) and simulated Environmental Mapping and Analysis Program (EnMAP) and Sentinel-2 imagery was carried out. All sensors were capable of unmixing crown components with a mean absolute error ranging between 3% and 21%.
Bibtex Type of Publication Article
Link to original publication Download Bibtex entry

Other Publications

2019

Kattenborn, T., Lopatina, J., Förster, M., Braun, A. C. and Fassnacht, F. E. (2019): UAV data as alternative to field sampling to map woody invasive species based on combined Sentinel-1 and Sentinel-2 data. Remote Sensing of Environment, 227(2019), pp. 61-73.


2018

Holtgrave, A.-K., Förster, M., Greifeneder, F., Notarnicola, C. and Kleinschmit, B. (2018): Estimation of Soil Moisture in Vegetation-Covered Floodplains with Sentinel-1 SAR Data Using Support Vector Regression. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2018, pp. 85–101.


Klinke, R., Kuechly, H., Frick, A., Förster, M., Schmidt, T., Holtgrave, A.-K. a. K. B., Spengler, D. and Neumann, C. (2018): Indicator-Based Soil Moisture Monitoring ofWetlands by Utilizing Sentinel and Landsat Remote Sensing Data. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2018, pp. 71–84.


2017


Schmidt, J., Fassnacht, F. E., Neff, C., Lausch, A., Kleinschmit, B., Förster, M. and Schmidtlein, S. (2017): Adapting a Natura 2000 field guideline for a remote sensing-based assessment of heathland conservation status. International Journal of Applied Earth Observation and Geoinformation, 60, pp. 61-71. doi: http://dx.doi.org/10.1016/j.jag.2017.04.005


2016

Gärtner, P., Förster, M. and Kleinschmit, B. (2016): The benefit of synthetically generated RapidEye and Landsat 8 data fusion time series for riparian forest disturbance monitoring. Remote Sensing of Environment, 2016(177), pp. 237-247. doi: doi:10.1016/j.rse.2016.01.028


2015

Baur, A. H., Lauf, S., Förster, M. and Kleinschmit, B. (2015): Estimating greenhouse gas emissions of European cities — Modeling emissions with only one spatial and one socioeconomic variable. Science of the Total Environment, 2015(520), pp. 49-58. doi: 10.1016/j.scitotenv.2015.03.030


Rocchini, D., Andreo, V., Förster, M., Gutierrez, A., Gillespie, W., Hauffe, H., He, K., Kleinschmit, B., Mairota, P., Marcantonio, M., Metz, M., Nagendra, H., Pareeth, S., Ponti, L., Ricotta, C., Rizzoli, A., Schaab, G., Zebisch, M., Zorer, R. and Neteler, M. (2015): Potential of remote sensing to predict species invasions: A modelling perspective. Progress in Physical Geography, 39(3), pp. 283-309. doi: 10.1177/0309133315574659


Nieland, S., Moran, N., Kleinschmit, B. and Förster, M. (2015): An ontological system for interoperable spatial generalisation in biodiversity monitoring. Computers & Geosciences, 84, pp. 86-95. doi: 10.1016/j.cageo.2015.08.006



Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions

This site uses Matomo for anonymized webanalysis. Visit Data Privacy for more information and opt-out options.

Fachgebiet Geoinformation in der Umweltplanung
Sekretariat EB5
Room EB 236a
Straße des 17. Juni 145
D - 10623 Berlin
Tel.: +49 (0)30 314 - 73 29 0
Fax: +49 (0)30 314 - 23 50 7