direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

M.Sc. Kyle Pipkins

Lupe

Wissenschaftlicher Mitarbeiter

Tel.: +49 (0)30 / 314 - 27 85 1

E-Mail:

Raum: EB 234

Personal Data
Date and place of birth: 1979 (Tampa, Florida, USA)
Employment and academic vita
1998-1999
Environmental Studies, Conflict and Peace Studies at Northland College in Ashland, Wisconsin
2001
Wisconsin Conservation Corps Crew Member, Ashland, Wisconsin
2002-2005
Bachelor of Arts in Geography at the University of Wisconsin, Madison
2005
Student Conservation Association Intern, Richmond, Virginia
2005-2007
Restoration Ecology Summer Intern, Madison Audubon Society, Madison, Wisconsin
2009-2011
Geographic Information Systems Analyst for the USACE Hurrican Protection Office, Atkins Global, New Orleans, Louisiana
2012-2015
Masters of Science in Environmental Planning at the Berlin Institute of Technology
2013-2015
Student Research Assistant for SenFor
since 2015
Urban Water Interfaces, funded through the German Research Foundation (DFG)

Research Topics

  • Urban evapotranspiration from high resolution remote sensing data
  • Upscaling remote sensing data from local to regional scales
  • Machine learning
  • Urban evapotranspiration modeling

Publications

2015

Clasen, A., Somers, B., Pipkins, K., Tits, L., Segl, K., Brell, M., Kleinschmit, B., Spengler, D., Lausch, A. and Förster, M. (2015). Spectral Unmixing of Forest Crown Components at Close Range, Airborne and Simulated Sentinel-2 and EnMAP Spectral Imaging Scale. remote sensing, 26.


Corbane, C., Lang, S., Pipkins, K., Alleaume, S., Deshayes, M., García Milláne, V., Strasser, T., Vanden Borre, J., Toon, S. and Förster, M. (2015). Remote sensing for mapping natural habitats and their conservation status – New opportunities and challenges. International Journal of Applied Earth Observation and Geoinformation, 7-16.


2014

Pipkins, K., Förster, M., Clasen, A., Schmidt, T. and Kleinschmit, B. (2014). A comparison of feature selection methods for multitemporal tree species classification. Proc. SPIE 9245, Earth Resources and Environmental Remote Sensing/GIS Applications


Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe

Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.