Inhalt des Dokuments
Prof. Dr. Birgit Kleinschmit
Fachgebietsleiterin
Tel.: +49 (0)30 / 314 - 72 84 7
E-Mail: birgit.kleinschmit(at)tu-berlin.de
Raum: EB 235a
Sprechstunde: nach Vereinbarung
2011 | Ernennung zur Universitätsprofessorin und Leiterin des Fachgebiets Geoinformation in der Umweltplanung an der Technischen Universität Berlin |
2003-2011 | Juniorprofessorin am Fachgebiet für Geoinformationsverarbeitung in der Umweltplanung an der Technischen Universität Berlin |
2001-2003 | Softwareentwicklerin bei der INTEND Geoinformatik GmbH in Kassel |
2001 | Promotion zum Dr. forest an der Universität Göttingen (magna cum laude) |
1998-2001 | Wissenschaftliche Mitarbeiterin an der Universität Göttingen am Institut für Forsteinrichtung, Ertragskunde und Fernerkundung |
1993-1998 | Studium der Forstwissenschaften an der Universität Göttingen |
1973 | in Münster, Westfalen geboren |
Forschungsinteressen
- Skalenübergreifende Analyse von Landnutzungsänderungen mit Hilfe von Geographischen Informationssystemen (GIS und Fernerkundung) zum besseren Verständnis des Mensch-Umweltsystems
- Modellierung von raum-zeitlichen Änderungen der Umwelt und Bewertung der Einflüsse auf Menschen und Ökosysteme
- Wissensbasierte Kombination von Geoinformationen und Fernerkundungsdaten
- Evaluierung neuer Sensortechnologien
Wichtige Funktionen, Auszeichnungen, Ehrungen
Seit 2019
- Mitglied im wissenschaftlichen Beirat für Waldpolitik des Bundesministerium für Ernährung und Landwirtschaft
- Mitglied im Transferbeirat der TU Berlin
Seit 2018
- stellvertretende Geschäftsführende Direktorin des Institutes für Landschaftsarchitektur und Umweltplanung, TU Berlin
Seit 2015
- Co-Speakerin der DFG research training group Urban Water Interfaces
Seit 2016
- Mitglied im Auswahl- und Lenkungsausschusses der Berlin International Graduate School in Model and Simulation based Research (BIMoS), TU Berlin
2012-2018
- Leiterin der Special Interest Group „Analysis of remote sensing data” der deutschen Gesellschaft für Photogrammetrie, Remote Sensing und Geoinformation
Seit 2018
- Mitglied der Kommission für die Vergabe von Promotionsstipendien der Elsa-Neumann-Stiftung
Seit 2010
- Mitglied im Lenkungsausschuss des Geo.X – Forschungsnetzwerks für Geowissenschaften in Berlin und Potsdam
Weitere Publikationen
Zitatschlüssel | Golovko2017 |
---|---|
Autor | Golovko, D. and Roessner, S. and Behling, R. and Wetzel, H.-U. and Kleinschmit, B. |
Seiten | 1-22 |
Jahr | 2017 |
ISSN | 2072-4292 |
Journal | Remote Sensing |
Jahrgang | 9 |
Nummer | 943 |
Zusammenfassung | Large areas in southern Kyrgyzstan are subjected to high and ongoing landslide activity; however, an objective and systematic assessment of landslide susceptibility at a regional level has not yet been conducted. In this paper, we investigate the contribution that remote sensing can provide to facilitate a quantitative landslide hazard assessment at a regional scale under the condition of data scarcity. We performed a landslide susceptibility and hazard assessment based on a multi-temporal landslide inventory that was derived from a 30-year time series of satellite remote sensing data using an automated identification approach. To evaluate the effect of the resulting inventory on the landslide susceptibility assessment, we calculated an alternative susceptibility model using a historical inventory that was derived by an expert through combining visual interpretation of remote sensing data with already existing knowledge on landslide activity in this region. For both susceptibility models, the same predisposing factors were used: geology, stream power index, absolute height, aspect and slope. A comparison of the two models revealed that using the multi-temporal landslide inventory covering the 30-year period results in model coefficients and susceptibility values that more strongly reflect the properties of the most recent landslide activity. Overall, both susceptibility maps present the highest susceptibility values for similar regions and are characterized by acceptable to high predictive performances. We conclude that the results of the automated landslide detection provide a suitable landslide inventory for a reliable large-area landslide susceptibility assessment. We also used the temporal information of the automatically detected multi-temporal landslide inventory to assess the temporal component of landslide hazard in the form of exceedance probability. The results show the great potential of satellite remote sensing for deriving detailed and systematic spatio-temporal information on landslide occurrences, which can significantly improve landslide susceptibility andhazard assessment at a regional scale, particularly in data-scarce regions such as Kyrgyzstan. |
Typ der Publikation | Kleinschmit |
Zusatzinformationen / Extras
Direktzugang
Schnellnavigation zur Seite über Nummerneingabe
Hilfsfunktionen
Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.

Fachgebiet Geoinformation in der Umweltplanung
Sekretariat EB5
Raum EB 236a
Straße des 17. Juni 145
D - 10623 Berlin
Tel.: +49 (0)30 314 - 73 29 0
Fax: +49 (0)30 314 - 23 50 7
E-Mail-Anfrage
Sekretariat EB5
Raum EB 236a
Straße des 17. Juni 145
D - 10623 Berlin
Tel.: +49 (0)30 314 - 73 29 0
Fax: +49 (0)30 314 - 23 50 7
E-Mail-Anfrage