Inhalt des Dokuments
zur Navigation
Prof. Dr. Birgit Kleinschmit
Fachgebietsleiterin
Tel.: +49 (0)30 / 314 - 72 84 7
E-Mail: birgit.kleinschmit(at)tu-berlin.de
Raum: EB 235a
Sprechstunde: nach Vereinbarung
2011 | Ernennung zur Universitätsprofessorin und Leiterin des Fachgebiets Geoinformation in der Umweltplanung an der Technischen Universität Berlin |
2003-2011 | Juniorprofessorin am Fachgebiet für Geoinformationsverarbeitung in der Umweltplanung an der Technischen Universität Berlin |
2001-2003 | Softwareentwicklerin bei der INTEND Geoinformatik GmbH in Kassel |
2001 | Promotion zum Dr. forest an der Universität Göttingen (magna cum laude) |
1998-2001 | Wissenschaftliche Mitarbeiterin an der Universität Göttingen am Institut für Forsteinrichtung, Ertragskunde und Fernerkundung |
1993-1998 | Studium der Forstwissenschaften an der Universität Göttingen |
1973 | in Münster, Westfalen geboren |
Forschungsinteressen
- Skalenübergreifende Analyse von Landnutzungsänderungen mit Hilfe von Geographischen Informationssystemen (GIS und Fernerkundung) zum besseren Verständnis des Mensch-Umweltsystems
- Modellierung von raum-zeitlichen Änderungen der Umwelt und Bewertung der Einflüsse auf Menschen und Ökosysteme
- Wissensbasierte Kombination von Geoinformationen und Fernerkundungsdaten
- Evaluierung neuer Sensortechnologien
Wichtige Funktionen, Auszeichnungen, Ehrungen
Seit 2019
- Mitglied im wissenschaftlichen Beirat für Waldpolitik des Bundesministerium für Ernährung und Landwirtschaft
- Mitglied im Transferbeirat der TU Berlin
Seit 2018
- stellvertretende Geschäftsführende Direktorin des Institutes für Landschaftsarchitektur und Umweltplanung, TU Berlin
Seit 2015
- Co-Speakerin der DFG research training group Urban Water Interfaces
Seit 2016
- Mitglied im Auswahl- und Lenkungsausschusses der Berlin International Graduate School in Model and Simulation based Research (BIMoS), TU Berlin
2012-2018
- Leiterin der Special Interest Group „Analysis of remote sensing data” der deutschen Gesellschaft für Photogrammetrie, Remote Sensing und Geoinformation
Seit 2018
- Mitglied der Kommission für die Vergabe von Promotionsstipendien der Elsa-Neumann-Stiftung
Seit 2010
- Mitglied im Lenkungsausschuss des Geo.X – Forschungsnetzwerks für Geowissenschaften in Berlin und Potsdam
Zeitschriftenbeiträge
Zitatschlüssel | Fersch2020 |
---|---|
Autor | Fersch, B. and Francke, T. and Heistermann, M. and Schrön, M. and Döpper, V. and Jakobi, J. and Baroni, G. and Blume, T. and Bogena, H. and Budach, C. and Gränzig, T. and Förster, M. and Güntner, A. and Hendricks Franssen, H.J. and Kasner, M. and Köhli, M. and Kleinschmit, B. and Kunstmann, H. and Patil, A. and Rasche, D. and Scheiffele, L. and Schmidt, U. and Szulc-Seyfried, S. and Weimar, J. and Zacharias, S. and Zreda, M. and Heber, B. and Kiese, R. and Mares, V. and Mollenhauer, H. and Völksch, I. and Oswald, S. |
Seiten | 2289-2309 |
Jahr | 2020 |
ISSN | 1866-3508 |
DOI | https://doi.org/10.5194/essd-12-2289-2020 |
Journal | Earth System Science Data |
Jahrgang | 12 |
Zusammenfassung | Monitoring soil moisture is still a challenge: it varies strongly in space and time and at various scales while conventional sensors typically suffer from small spatial support. With a sensor footprint up to several hectares, cosmic-ray neutron sensing (CRNS) is a modern technology to address that challenge. So far, the CRNS method has typically been applied with single sensors or in sparse national-scale networks. This study presents, for the first time, a dense network of 24 CRNS stations that covered, from May to July 2019, an area of just 1 km2: the pre-Alpine Rott headwater catchment in Southern Germany, which is characterized by strong soil moisture gradients in a heterogeneous landscape with forests and grasslands. With substantially overlapping sensor footprints, this network was designed to study root-zone soil moisture dynamics at the catchment scale. The observations of the dense CRNS network were complemented by extensive measurements that allow users to study soil moisture variability at various spatial scales: roving (mobile) CRNS units, remotely sensed thermal images from unmanned areal systems (UASs), permanent and temporary wireless sensor networks, profile probes, and comprehensive manual soil sampling. Since neutron counts are also affected by hydrogen pools other than soil moisture, vegetation biomass was monitored in forest and grassland patches, as well as meteorological variables; discharge and groundwater tables were recorded to support hydrological modeling experiments. As a result, we provide a unique and comprehensive data set to several research communities: to those who investigate the retrieval of soil moisture from cosmic-ray neutron sensing, to those who study the variability of soil moisture at different spatiotemporal scales, and to those who intend to better understand the role of root-zone soil moisture dynamics in the context of catchment and groundwater hydrology, as well as land–atmosphere exchange processes. The data set is available through the EUDAT Collaborative Data Infrastructure and is split into two subsets: https://doi.org/10.23728/b2share.282675586fb94f44ab2fd09da0856883 [Titel anhand dieser DOI in Citavi-Projekt übernehmen] (Fersch et al., 2020a) and https://doi.org/10.23728/b2share.bd89f066c26a4507ad654e994153358b [Titel anhand dieser DOI in Citavi-Projekt übernehmen] (Fersch et al., 2020b). |
Typ der Publikation | Kleinschmit |