direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Prof. Dr. Birgit Kleinschmit

Lupe

Fachgebietsleiterin

Tel.: +49 (0)30 / 314 - 72 84 7

E-Mail:

Raum: EB 235a
Sprechstunde: nach Vereinbarung

Lebenslauf
2011


Ernennung zur Universitätsprofessorin und Leiterin des Fachgebiets Geoinformation in der Umweltplanung an der Technischen Universität Berlin
2003-2011


Juniorprofessorin am Fachgebiet für Geoinformationsverarbeitung in der Umweltplanung an der Technischen Universität Berlin
2001-2003
Softwareentwicklerin bei der INTEND Geoinformatik GmbH in Kassel
2001
Promotion zum Dr. forest an der Universität Göttingen (magna cum laude)
1998-2001


Wissenschaftliche Mitarbeiterin an der Universität Göttingen am Institut für Forsteinrichtung, Ertragskunde und Fernerkundung
1993-1998
Studium der Forstwissenschaften an der Universität Göttingen
1973
in Münster, Westfalen geboren

Forschungsinteressen

  • Skalenübergreifende Analyse von Landnutzungsänderungen mit Hilfe von Geographischen Informationssystemen (GIS und Fernerkundung) zum besseren Verständnis des Mensch-Umweltsystems
  • Modellierung von raum-zeitlichen Änderungen der Umwelt und Bewertung der Einflüsse auf Menschen und Ökosysteme 
  • Wissensbasierte Kombination von Geoinformationen und Fernerkundungsdaten
  • Evaluierung neuer Sensortechnologien

 

 

Wichtige Funktionen, Auszeichnungen, Ehrungen

Seit 2019         

  • Mitglied im wissenschaftlichen Beirat für Waldpolitik des Bundesministerium für Ernährung und Landwirtschaft
  • Mitglied im Transferbeirat der TU Berlin

 

Seit 2018

  • stellvertretende Geschäftsführende Direktorin des Institutes für Landschaftsarchitektur und Umweltplanung, TU Berlin

Seit 2015        

  • Co-Speakerin der DFG research training group Urban Water Interfaces

Seit 2016

  • Mitglied im Auswahl- und Lenkungsausschusses der Berlin International Graduate School in Model and Simulation based Research (BIMoS), TU Berlin

2012-2018       

  • Leiterin der Special Interest Group „Analysis of remote sensing data” der deutschen Gesellschaft für Photogrammetrie, Remote Sensing und Geoinformation

Seit 2018        

  • Mitglied der Kommission für die Vergabe von Promotionsstipendien der Elsa-Neumann-Stiftung

Seit 2010         

  • Mitglied im Lenkungsausschuss des Geo.X – Forschungsnetzwerks für Geowissenschaften in Berlin und Potsdam

 

 

Zeitschriftenbeiträge

2022

Aljoumani, B., Sanchez-Espigares, J., Kluge, B., Wessolek, G. and Kleinschmit, B. (2022). Analyzing Temporal Trends of Urban Evaporation Using Generalized Additive Models. Land


Vallentin, C., Harfenmeister, K., Itzerott, S., Kleinschmit, B., Conrad, C. and Spengler, D. (2022). Suitability of satellite remote sensing data for yield estimation in northeast Germany. Precision Agriculture, 52–82.


Duarte Rocha, A., Vulova, S., van der Tol, C., Förster, M. and Kleinschmit, B. (2022). Modelling hourly evapotranspiration in urban environments with SCOPE using open remote sensing and meteorological data. Hydrology and Earth System Sciences


2021

Rocchini, D., Salvatori, N., Beierkuhnlein, C., Chiarucci, A., de Boissieu, F., Förster, M., Garzon-Lopez, C., Gillespie, T. W., Hauffe, H., He, K., Kleinschmit, B., Lenoir, J., Malavasi, M., Moudrý, V., Nagendra, H., Payne, D., Šímová, P., Torresani, M., Wegmann, M. and Féret, J.-B. (2021). From local spectral species to global spectral communities: A benchmark for ecosystem diversity estimate by remote sensing.. Ecological Informatics. Elsevier, 1-10.


Hölzl, S. E., Veskov, M., Scheibner, T., Le, T. T. and Kleinschmit, B. (2021). Vulnerable socioeconomic groups are disproportionately exposed to multiple environmental burden in Berlin - implications– for planning. International journal of urban sustainable development, 1-18.


Gränzig, T., Fassnacht, F. E., Kleinschmit, B. and Förster, M. (2021). Mapping the fractional coverage of the invasive shrub Ulex europaeus with multi-temporal Sentinel-2 imagery utilizing UAV orthoimages and a new spatial optimization approach.. International Journal of Applied Earth Observation and Geoinformation


Bauhus, J., Seeling, U., Dieter, M., Farwig, N., Hafner, A., Kätzel, R., Kleinschmit, B., Lang, F., Lindner, M., Möhring, B., Müller, J., M., N., Richter, K. and Schraml, U. (2021). Die Anpassung von Wäldern und Waldwirtschaft an den Klimawandel. Berichte über Landwirtschaft-Zeitschrift für Agrarpolitik und Landwirtschaft, 1-158.


Schulz, C., Holtrave, A. and Kleinschmit, B. (2021). Large-scale winter catch crop monitoring with Sentinel-2 time series and machine learning–An alternative to on-site controls?. Computers and Electronics in Agriculture


Vulova, S., Meier, F., Rocha, A. D., Quanz, J., Nouri, H. and and Kleinschmit, B. (2021). Modeling urban evapotranspiration using remote sensing, flux footprints, and artificial intelligence. Science of The Total Environment, 1-13.


2020

Vulova, S., Meier, F., Fenner, D., Nouri, H. and Kleinschmit, B. (2020). Summer Nights in Berlin, Germany: Modeling Air Temperature Spatially With Remote Sensing, Crowdsourced Weather Data, and Machine Learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1-15.


Weitere Publikationen

Using radiative transfer models for mapping soil moisture content under grassland with UAS-borne hyperspectral data
Zitatschlüssel Döpper2021
Autor Veronika U. Döpper and Alby Duarte Rocha and Tobias Gränzig and Birgit Kleinschmit and Michael Förster
Jahr 2021
ISSN 0277-786X
DOI https://doi.org/10.1117/12.2600296
Journal Proc. SPIE 11856, Remote Sensing for Agriculture, Ecosystems, and Hydrology XXIII
Zusammenfassung Soil moisture content (SMC) is a key parameter of environmental processes. Remote sensing provides effective methods for mapping SMC at different spatial resolutions. Using UAS-borne hyperspectral observations enables a SMC retrieval at sub-meter scales. Radiative transfer models (RTMs) such as ProSAIL or Scope include a SMC specific input variable and are thus a potential tool to derive SMC and avoiding extensive reference SMC measurements. The inverse application of RTMs supplies information on SMC and plant traits. Scope and ProSAIL involve SMC data of the root zone and at the surface, respectively. The combined use of both models offers the possibility to derive SMC at two vertical depths. Moreover, SMC relevant vegetation proxies such as leaf water content can be retrieved and alternatively used as indicator for SMC. Such plant traits are highest correlated to SMC at depths of major water uptake. However, their response can have a significant time-lag. We analyze the derivation of SMC at the soil surface and at the root zone using the SMC parameters within existing RTMs. As a first step, we investigate on the sensitivity of ProSAIL and Scope to their soil moisture parameters. We apply these findings on UAS-borne hyperspectral and TIR imagery acquired over a pre-alpine TERENO grassland area. The site is equipped with a SoilNet that measures SMC at different depths. Using this data, we assess the vertical extent of both soil moisture content parameters. By inverse modelling of the vegetation parameters and the use of the temporally continuous SoilNet data at root zone level, we analyze the time-lag between changes in SMC and the corresponding plant trait response to optimize the retrieval of SMC.
Typ der Publikation Kleinschmit
Link zur Publikation Download Bibtex Eintrag

Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe

Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.

Fachgebiet Geoinformation in der Umweltplanung
Sekretariat EB5
Raum EB 236a
Straße des 17. Juni 145
D - 10623 Berlin
Tel.: +49 (0)30 314 - 73 29 0
Fax: +49 (0)30 314 - 23 50 7