TU Berlin

Geoinformation in der UmweltplanungKleinschmit, Birgit

Inhalt des Dokuments

zur Navigation

Prof. Dr. Birgit Kleinschmit

Lupe

Fachgebietsleiterin

Tel.: +49 (0)30 / 314 - 72 84 7

E-Mail:

Raum: EB 235a
Sprechstunde: nach Vereinbarung

Lebenslauf
2011


Ernennung zur Universitätsprofessorin und Leiterin des Fachgebiets Geoinformation in der Umweltplanung an der Technischen Universität Berlin
2003-2011


Juniorprofessorin am Fachgebiet für Geoinformationsverarbeitung in der Umweltplanung an der Technischen Universität Berlin
2001-2003
Softwareentwicklerin bei der INTEND Geoinformatik GmbH in Kassel
2001
Promotion zum Dr. forest an der Universität Göttingen (magna cum laude)
1998-2001


Wissenschaftliche Mitarbeiterin an der Universität Göttingen am Institut für Forsteinrichtung, Ertragskunde und Fernerkundung
1993-1998
Studium der Forstwissenschaften an der Universität Göttingen
1973
in Münster, Westfalen geboren

Forschungsinteressen

  • Skalenübergreifende Analyse von Landnutzungsänderungen mit Hilfe von Geographischen Informationssystemen (GIS und Fernerkundung) zum besseren Verständnis des Mensch-Umweltsystems
  • Modellierung von raum-zeitlichen Änderungen der Umwelt und Bewertung der Einflüsse auf Menschen und Ökosysteme 
  • Wissensbasierte Kombination von Geoinformationen und Fernerkundungsdaten
  • Evaluierung neuer Sensortechnologien

 

 

Wichtige Funktionen, Auszeichnungen, Ehrungen

Seit 2019         

  • Mitglied im wissenschaftlichen Beirat für Waldpolitik des Bundesministerium für Ernährung und Landwirtschaft
  • Mitglied im Transferbeirat der TU Berlin

 

Seit 2018

  • stellvertretende Geschäftsführende Direktorin des Institutes für Landschaftsarchitektur und Umweltplanung, TU Berlin

Seit 2015        

  • Co-Speakerin der DFG research training group Urban Water Interfaces

Seit 2016

  • Mitglied im Auswahl- und Lenkungsausschusses der Berlin International Graduate School in Model and Simulation based Research (BIMoS), TU Berlin

2012-2018       

  • Leiterin der Special Interest Group „Analysis of remote sensing data” der deutschen Gesellschaft für Photogrammetrie, Remote Sensing und Geoinformation

Seit 2018        

  • Mitglied der Kommission für die Vergabe von Promotionsstipendien der Elsa-Neumann-Stiftung

Seit 2010         

  • Mitglied im Lenkungsausschuss des Geo.X – Forschungsnetzwerks für Geowissenschaften in Berlin und Potsdam

 

 

Zeitschriftenbeiträge

2021

Rocchini, D., Salvatori, N., Beierkuhnlein, C., Chiarucci, A., de Boissieu, F., Förster, M., Garzon-Lopez, C., Gillespie, T. W., Hauffe, H., He, K., Kleinschmit, B., Lenoir, J., Malavasi, M., Moudrý, V., Nagendra, H., Payne, D., Šímová, P., Torresani, M., Wegmann, M. and Féret, J.-B. (2021). From local spectral species to global spectral communities: A benchmark for ecosystem diversity estimate by remote sensing.. Ecological Informatics. Elsevier, 1-10.


Hölzl, S. E., Veskov, M., Scheibner, T., Le, T. T. and Kleinschmit, B. (2021). Vulnerable socioeconomic groups are disproportionately exposed to multiple environmental burden in Berlin - implications– for planning. International journal of urban sustainable development, 1-18.


Gränzig, T., Fassnacht, F. E., Kleinschmit, B. and Förster, M. (2021). Mapping the fractional coverage of the invasive shrub Ulex europaeus with multi-temporal Sentinel-2 imagery utilizing UAV orthoimages and a new spatial optimization approach.. International Journal of Applied Earth Observation and Geoinformation


Bauhus, J., Seeling, U., Dieter, M., Farwig, N., Hafner, A., Kätzel, R., Kleinschmit, B., Lang, F., Lindner, M., Möhring, B., Müller, J., M., N., Richter, K. and Schraml, U. (2021). Die Anpassung von Wäldern und Waldwirtschaft an den Klimawandel. Berichte über Landwirtschaft-Zeitschrift für Agrarpolitik und Landwirtschaft, 1-158.


Vulova, S., Meier, F., Rocha, A. D., Quanz, J., Nouri, H. and and Kleinschmit, B. (2021). Modeling urban evapotranspiration using remote sensing, flux footprints, and artificial intelligence. Science of The Total Environment, 1-13.


2020

Vulova, S., Meier, F., Fenner, D., Nouri, H. and Kleinschmit, B. (2020). Summer Nights in Berlin, Germany: Modeling Air Temperature Spatially With Remote Sensing, Crowdsourced Weather Data, and Machine Learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1-15.


Holtgrave, A., Röder, N., Ackermann, A., Erasmi, S. and Kleinschmit, B. (2020). Comparing Sentinel-1 and -2 Data and Indices for Agricultural Land Use Monitoring. remote sensing, 1-27.


Fersch, B., Francke, T., Heistermann, M., Schrön, M., Döpper, V., Jakobi, J., Baroni, G., Blume, T., Bogena, H., Budach, C., Gränzig, T., Förster, M., Güntner, A., Hendricks Franssen, H., Kasner, M., Köhli, M., Kleinschmit, B., Kunstmann, H., Patil, A., Rasche, D., Scheiffele, L., Schmidt, U., Szulc-Seyfried, S., Weimar, J., Zacharias, S., Zreda, M., Heber, B., Kiese, R., Mares, V., Mollenhauer, H., Völksch, I. and Oswald, S. (2020). A dense network of cosmic-ray neutron sensors for soil moisture observation in a highly instrumented pre-Alpine headwater catchment in Germany. Earth System Science Data, 2289-2309.


Döpper, V., Gränzig, T., Kleinschmit, B. and Förster, M. (2020). Challenges in UAS-Based TIR Imagery Processing: Image Alignment and Uncertainty Quantification.. remote sensing, 1-22.


2019

Vallentin, C., Dobers, E. S., Itzerott, S., Kleinschmit, B. and Spengler, D. (2019). Delineation of management zones with spatial data fusion and belief theory. Precision Agriculture. Springer, 1-29.


Weitere Publikationen

Modeling urban evapotranspiration using remote sensing, flux footprints, and artificial intelligence
Zitatschlüssel Vulova2021
Autor Vulova, S. and Meier, F. and Rocha, A. D. and Quanz, J. and Nouri, H. and and Kleinschmit, B.
Seiten 1-13
Jahr 2021
ISSN 0048-9697
DOI https://doi.org/10.1016/j.scitotenv.2021.147293
Journal Science of The Total Environment
Jahrgang 786
Zusammenfassung As climate change progresses, urban areas are increasingly affected by water scarcity and the urban heat island effect. Evapotranspiration (ET) is a crucial component of urban greening initiatives of cities worldwide aimed at mitigating these issues. However, ET estimation methods in urban areas have so far been limited. An expanding number of flux towers in urban environments provide the opportunity to directly measure ET by the eddy covariance method. In this study, we present a novel approach to model urban ET by combining flux footprint modeling, remote sensing and geographic information system (GIS) data, and deep learning and machine learning techniques. This approach facilitates spatio-temporal extrapolation of ET at a half-hourly resolution; we tested this approach with a two-year dataset from two flux towers in Berlin, Germany. The benefit of integrating remote sensing and GIS data into models was investigated by testing four predictor scenarios. Two algorithms (1D convolutional neural networks (CNNs) and random forest (RF)) were compared. The best-performing models were then used to model ET values for the year 2019. The inclusion of GIS data extracted using flux footprints enhanced the predictive accuracy of models, particularly when meteorological data was more limited. The best-performing scenario (meteorological and GIS data) showed an RMSE of 0.0239 mm/h and R2 of 0.840 with RF and an RMSE of 0.0250 mm/h and a R2 of 0.824 with 1D CNN for the more vegetated site. The 2019 ET sum was substantially higher at the site surrounded by more urban greenery (366 mm) than at the inner-city site (223 mm), demonstrating the substantial influence of vegetation on the urban water cycle. The proposed method is highly promising for modeling ET in a heterogeneous urban environment and can support climate change mitigation initiatives of urban areas worldwide.
Typ der Publikation Kleinschmit
Link zur Publikation Download Bibtex Eintrag

Navigation

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe