Inhalt des Dokuments
zur Navigation
Prof. Dr. Birgit Kleinschmit
Fachgebietsleiterin
Tel.: +49 (0)30 / 314 - 72 84 7
E-Mail: birgit.kleinschmit(at)tu-berlin.de
Raum: EB 235a
Sprechstunde: nach Vereinbarung
2011 | Ernennung zur Universitätsprofessorin und Leiterin des Fachgebiets Geoinformation in der Umweltplanung an der Technischen Universität Berlin |
2003-2011 | Juniorprofessorin am Fachgebiet für Geoinformationsverarbeitung in der Umweltplanung an der Technischen Universität Berlin |
2001-2003 | Softwareentwicklerin bei der INTEND Geoinformatik GmbH in Kassel |
2001 | Promotion zum Dr. forest an der Universität Göttingen (magna cum laude) |
1998-2001 | Wissenschaftliche Mitarbeiterin an der Universität Göttingen am Institut für Forsteinrichtung, Ertragskunde und Fernerkundung |
1993-1998 | Studium der Forstwissenschaften an der Universität Göttingen |
1973 | in Münster, Westfalen geboren |
Forschungsinteressen
- Skalenübergreifende Analyse von Landnutzungsänderungen mit Hilfe von Geographischen Informationssystemen (GIS und Fernerkundung) zum besseren Verständnis des Mensch-Umweltsystems
- Modellierung von raum-zeitlichen Änderungen der Umwelt und Bewertung der Einflüsse auf Menschen und Ökosysteme
- Wissensbasierte Kombination von Geoinformationen und Fernerkundungsdaten
- Evaluierung neuer Sensortechnologien
Wichtige Funktionen, Auszeichnungen, Ehrungen
Seit 2019
- Mitglied im wissenschaftlichen Beirat für Waldpolitik des Bundesministerium für Ernährung und Landwirtschaft
- Mitglied im Transferbeirat der TU Berlin
Seit 2018
- stellvertretende Geschäftsführende Direktorin des Institutes für Landschaftsarchitektur und Umweltplanung, TU Berlin
Seit 2015
- Co-Speakerin der DFG research training group Urban Water Interfaces
Seit 2016
- Mitglied im Auswahl- und Lenkungsausschusses der Berlin International Graduate School in Model and Simulation based Research (BIMoS), TU Berlin
2012-2018
- Leiterin der Special Interest Group „Analysis of remote sensing data” der deutschen Gesellschaft für Photogrammetrie, Remote Sensing und Geoinformation
Seit 2018
- Mitglied der Kommission für die Vergabe von Promotionsstipendien der Elsa-Neumann-Stiftung
Seit 2010
- Mitglied im Lenkungsausschuss des Geo.X – Forschungsnetzwerks für Geowissenschaften in Berlin und Potsdam
Zeitschriftenbeiträge
Zitatschlüssel | Schmidt20170 |
---|---|
Autor | Schmidt, J. and Fassnacht, F. E. and Neff, C. and Lausch, A. and Kleinschmit, B. and Förster, M. and Schmidtlein, S. |
Seiten | 61-71 |
Jahr | 2017 |
DOI | http://dx.doi.org/10.1016/j.jag.2017.04.005 |
Journal | International Journal of Applied Earth Observation and Geoinformation |
Jahrgang | 60 |
Zusammenfassung | Remote sensing can be a valuable tool for supporting nature conservation monitoring systems. However, for many areas of conservation interest, there is still a considerable gap between field-based operational monitoring guidelines and the current remote sensing-based approaches. This hampers application in practice of the latter. Here, we propose a remote sensing approach for mapping the conservation status of Calluna-dominated Natura 2000 dwarf shrub habitats that is closely related to field mapping schemes. We transferred the evaluation criteria of the field guidelines to three related variables that can be captured by remote sensing: (1) coverage of the key species, (2) stand structural diversity, and (3) co-occurring species. Continuous information on these variables was obtained by regressing ground reference data from field surveys and UAV flights against airborne hyperspectral imagery. Merging the three resulting quality layers in an RGB representation allowed for illustrating the habitat quality in a continuous way. User-defined thresholds can be applied to this stack of quality layers to derive an overall assessment of habitat quality in terms of nature conservation, i.e. the conservation status. In our study, we found good accordance of the remotely sensed data with field-based information for the three variables key species, stand structural diversity and co-occurring vegetation (R2 of 0.79, 0.69, and 0.71, respectively) and it was possible to derive meaningful habitat quality maps. The conservation status could be derived with an accuracy of 65%. In interpreting these results it should be considered that the remote sensing based layers are independent estimates of habitat quality in their own right and not a mere replacement of the criteria used in the field guidelines. The approach is thought to be transferable to similar regions with minor adaptions. Our results refer to Calluna heathland which we consider a comparably easy target for remote sensing. Hence, the transfer of field guidelines to remote sensing indicators was rather successful in this case but needs further evaluation for other habitats. |
Typ der Publikation | Kleinschmit |