Inhalt des Dokuments
Prof. Dr. Birgit Kleinschmit
Fachgebietsleiterin
Tel.: +49 (0)30 / 314 - 72 84 7
E-Mail: birgit.kleinschmit(at)tu-berlin.de
Raum: EB 235a
Sprechstunde: nach Vereinbarung
2011 | Ernennung zur Universitätsprofessorin und Leiterin des Fachgebiets Geoinformation in der Umweltplanung an der Technischen Universität Berlin |
2003-2011 | Juniorprofessorin am Fachgebiet für Geoinformationsverarbeitung in der Umweltplanung an der Technischen Universität Berlin |
2001-2003 | Softwareentwicklerin bei der INTEND Geoinformatik GmbH in Kassel |
2001 | Promotion zum Dr. forest an der Universität Göttingen (magna cum laude) |
1998-2001 | Wissenschaftliche Mitarbeiterin an der Universität Göttingen am Institut für Forsteinrichtung, Ertragskunde und Fernerkundung |
1993-1998 | Studium der Forstwissenschaften an der Universität Göttingen |
1973 | in Münster, Westfalen geboren |
Forschungsinteressen
- Skalenübergreifende Analyse von Landnutzungsänderungen mit Hilfe von Geographischen Informationssystemen (GIS und Fernerkundung) zum besseren Verständnis des Mensch-Umweltsystems
- Modellierung von raum-zeitlichen Änderungen der Umwelt und Bewertung der Einflüsse auf Menschen und Ökosysteme
- Wissensbasierte Kombination von Geoinformationen und Fernerkundungsdaten
- Evaluierung neuer Sensortechnologien
Wichtige Funktionen, Auszeichnungen, Ehrungen
Seit 2019
- Mitglied im wissenschaftlichen Beirat für Waldpolitik des Bundesministerium für Ernährung und Landwirtschaft
- Mitglied im Transferbeirat der TU Berlin
Seit 2018
- stellvertretende Geschäftsführende Direktorin des Institutes für Landschaftsarchitektur und Umweltplanung, TU Berlin
Seit 2015
- Co-Speakerin der DFG research training group Urban Water Interfaces
Seit 2016
- Mitglied im Auswahl- und Lenkungsausschusses der Berlin International Graduate School in Model and Simulation based Research (BIMoS), TU Berlin
2012-2018
- Leiterin der Special Interest Group „Analysis of remote sensing data” der deutschen Gesellschaft für Photogrammetrie, Remote Sensing und Geoinformation
Seit 2018
- Mitglied der Kommission für die Vergabe von Promotionsstipendien der Elsa-Neumann-Stiftung
Seit 2010
- Mitglied im Lenkungsausschuss des Geo.X – Forschungsnetzwerks für Geowissenschaften in Berlin und Potsdam
Zeitschriftenbeiträge
Zitatschlüssel | Vulova2021 |
---|---|
Autor | Vulova, S. and Meier, F. and Rocha, A. D. and Quanz, J. and Nouri, H. and and Kleinschmit, B. |
Seiten | 1-13 |
Jahr | 2021 |
ISSN | 0048-9697 |
DOI | https://doi.org/10.1016/j.scitotenv.2021.147293 |
Journal | Science of The Total Environment |
Jahrgang | 786 |
Zusammenfassung | As climate change progresses, urban areas are increasingly affected by water scarcity and the urban heat island effect. Evapotranspiration (ET) is a crucial component of urban greening initiatives of cities worldwide aimed at mitigating these issues. However, ET estimation methods in urban areas have so far been limited. An expanding number of flux towers in urban environments provide the opportunity to directly measure ET by the eddy covariance method. In this study, we present a novel approach to model urban ET by combining flux footprint modeling, remote sensing and geographic information system (GIS) data, and deep learning and machine learning techniques. This approach facilitates spatio-temporal extrapolation of ET at a half-hourly resolution; we tested this approach with a two-year dataset from two flux towers in Berlin, Germany. The benefit of integrating remote sensing and GIS data into models was investigated by testing four predictor scenarios. Two algorithms (1D convolutional neural networks (CNNs) and random forest (RF)) were compared. The best-performing models were then used to model ET values for the year 2019. The inclusion of GIS data extracted using flux footprints enhanced the predictive accuracy of models, particularly when meteorological data was more limited. The best-performing scenario (meteorological and GIS data) showed an RMSE of 0.0239 mm/h and R2 of 0.840 with RF and an RMSE of 0.0250 mm/h and a R2 of 0.824 with 1D CNN for the more vegetated site. The 2019 ET sum was substantially higher at the site surrounded by more urban greenery (366 mm) than at the inner-city site (223 mm), demonstrating the substantial influence of vegetation on the urban water cycle. The proposed method is highly promising for modeling ET in a heterogeneous urban environment and can support climate change mitigation initiatives of urban areas worldwide. |
Typ der Publikation | Kleinschmit |
Zusatzinformationen / Extras
Direktzugang
Schnellnavigation zur Seite über Nummerneingabe
Hilfsfunktionen
Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.

Fachgebiet Geoinformation in der Umweltplanung
Sekretariat EB5
Raum EB 236a
Straße des 17. Juni 145
D - 10623 Berlin
Tel.: +49 (0)30 314 - 73 29 0
Fax: +49 (0)30 314 - 23 50 7
E-Mail-Anfrage
Sekretariat EB5
Raum EB 236a
Straße des 17. Juni 145
D - 10623 Berlin
Tel.: +49 (0)30 314 - 73 29 0
Fax: +49 (0)30 314 - 23 50 7
E-Mail-Anfrage