direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Prof. Dr. Birgit Kleinschmit

Lupe

Fachgebietsleiterin

Tel.: +49 (0)30 / 314 - 72 84 7

E-Mail:

Raum: EB 235a
Sprechstunde: nach Vereinbarung

Lebenslauf
2011


Ernennung zur Universitätsprofessorin und Leiterin des Fachgebiets Geoinformation in der Umweltplanung an der Technischen Universität Berlin
2003-2011


Juniorprofessorin am Fachgebiet für Geoinformationsverarbeitung in der Umweltplanung an der Technischen Universität Berlin
2001-2003
Softwareentwicklerin bei der INTEND Geoinformatik GmbH in Kassel
2001
Promotion zum Dr. forest an der Universität Göttingen (magna cum laude)
1998-2001


Wissenschaftliche Mitarbeiterin an der Universität Göttingen am Institut für Forsteinrichtung, Ertragskunde und Fernerkundung
1993-1998
Studium der Forstwissenschaften an der Universität Göttingen
1973
in Münster, Westfalen geboren

Forschungsinteressen

  • Skalenübergreifende Analyse von Landnutzungsänderungen mit Hilfe von Geographischen Informationssystemen (GIS und Fernerkundung) zum besseren Verständnis des Mensch-Umweltsystems
  • Modellierung von raum-zeitlichen Änderungen der Umwelt und Bewertung der Einflüsse auf Menschen und Ökosysteme 
  • Wissensbasierte Kombination von Geoinformationen und Fernerkundungsdaten
  • Evaluierung neuer Sensortechnologien

Zeitschriftenbeiträge

2019

Schulz, C. and Kleinschmit, B. (2019). Zentralasiatische Tugai-Auwälder – Ein gefährdetes Ökosystem. Auenmagazin, 11-17.


2018

Holtgrave, A.-K., Förster, M., Greifeneder, F., Notarnicola, C. and Kleinschmit, B. (2018). Estimation of Soil Moisture in Vegetation-Covered Floodplains with Sentinel-1 SAR Data Using Support Vector Regression. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 85–101.


Klinke, R., Kuechly, H., Frick, A., Förster, M., Schmidt, T., Holtgrave, A.-K. a. K. B., Spengler, D. and Neumann, C. (2018). Indicator-Based Soil Moisture Monitoring ofWetlands by Utilizing Sentinel and Landsat Remote Sensing Data. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 71–84.


Heuner, M., Schröder, B., Schröder, U. and Kleinschmit, B. (2018). Contrasting elevational responses of regularly flooded 4 marsh plants in navigable estuaries. Ecohydrology & Hydrobiology, 1-17.


Luan, X., Buyantuev, A., Baur, A. H., Kleinschmit, B., Wang, H., Wei, S., Liu, M. and Xu, C. (2018). Linking greenhouse gas emissions to urban landscape structure: the relevance of spatial and thematic resolutions of land use/cover data. Landscape Ecology, 1211–1224.


Gras, P., Knuth, S., Börner, K., Marescot, L., Benhaiem, S., Aue, A., Wittstatt, U., Kleinschmit, B. and Kramer-Schadt, S. (2018). Landscape Structures Affect Risk of Canine Distemper in Urban Wildlife. Frontiers in Ecology and Evolution, 1-16.


2017

Koch, R., Almeida-Cortezb, J. S. and Kleinschmit, B. (2017). Revealing areas of high nature conservation importance in aseasonally dry tropical forest in Brazil: Combination of modelled plantdiversity hot spots and threat patterns. Journal for Nature Conservation. Elsevier, 24-39.


Neumann, C., Itzerott, S., Weiss, G., Kleinschmit, B. and Schmidtlein, S. (2017). Mapping multiple plant species abundance patterns - A multiobjective optimization procedure for combining reflectance spectroscopy and species ordination. Ecological Informatics. Elsevier, 61-76.


Ayazli, I. E., Kilic, F., Lauf, S., Kleinschmit, B. and Demir, H. (2017). Creating urban growth simulation models driven by the bosphorus bridges. Fresenius Environmental Bulletin, 113-117.


Moran, N., Nieland, S., Tintrup gen. Suntrup, G. and Kleinschmit, B. (2017). Combining machine learning and ontological data handling for multi-source classification of nature conservation areas. International Journal of Applied Earth Observation and Geoinformation, 124–133.


Weitere Publikationen

Sensitivity analysis of RapidEye spectral bands and derived vegetation indices for insect defoliation detection in pure Scots pine stands
Zitatschlüssel Marx2017
Autor Marx, A. and Kleinschmit, B.
Seiten 659-668
Jahr 2017
DOI 10.3832/ifor1727-010
Journal iForest Biogeosciences and Forestry
Jahrgang 2017
Nummer 10
Zusammenfassung This study investigated the statistical relationship between defoliation in pine forests infested by nun moths (Lymantria monacha) and the spectral bands of the RapidEye sensor, including the derived normalized difference vegetation index (NDVI) and the normalized difference red-edge index (NDRE). The strength of the relationship between the spectral variables and the ground reference samples of percent remaining foliage (PRF) was assessed over three test years by the Spearman’s ρ correlation coefficient, revealing the following ranking order (from high to low ρ): NDRE, NDVI, red, NIR, green, blue, and rededge. A special focus was directed at the vegetation indices. In both discriminant analyses and decision tree classification, the NDRE yielded higher classification accuracy in the defoliation classes containing none to moderate levels of defoliation, whereas the NDVI yielded higher classification accuracy in the defoliation classes representing severe or complete defoliation. We concluded that the NDRE and the NDVI respond very similarly to changes in the amount of foliage, but exhibit particular strengths at different defoliation levels. Combining the NDRE and the NDVI in one discriminant function, the average gain of overall accuracy amounted to 7.8 percentage points compared to the NDRE only, and 7.4 percentage points compared to the NDVI only. Using both vegetation indices in a machine-learning-based decision tree classifier, the overall accuracy further improved and reached 81% for the test year 2012, 71% for 2013, and 79% for the test year 2014.
Typ der Publikation Kleinschmit
Download Bibtex Eintrag

Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe

Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.

Fachgebiet Geoinformation in der Umweltplanung
Sekretariat EB5
Raum EB 236a
Straße des 17. Juni 145
D - 10623 Berlin
Tel.: +49 (0)30 314 - 73 29 0
Fax: +49 (0)30 314 - 23 50 7