direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Prof. Dr. Birgit Kleinschmit

Lupe

Fachgebietsleiterin

Tel.: +49 (0)30 / 314 - 72 84 7

E-Mail:

Raum: EB 235a
Sprechstunde: nach Vereinbarung

Lebenslauf
2011


Ernennung zur Universitätsprofessorin und Leiterin des Fachgebiets Geoinformation in der Umweltplanung an der Technischen Universität Berlin
2003-2011


Juniorprofessorin am Fachgebiet für Geoinformationsverarbeitung in der Umweltplanung an der Technischen Universität Berlin
2001-2003
Softwareentwicklerin bei der INTEND Geoinformatik GmbH in Kassel
2001
Promotion zum Dr. forest an der Universität Göttingen (magna cum laude)
1998-2001


Wissenschaftliche Mitarbeiterin an der Universität Göttingen am Institut für Forsteinrichtung, Ertragskunde und Fernerkundung
1993-1998
Studium der Forstwissenschaften an der Universität Göttingen
1973
in Münster, Westfalen geboren

Forschungsinteressen

  • Skalenübergreifende Analyse von Landnutzungsänderungen mit Hilfe von Geographischen Informationssystemen (GIS und Fernerkundung) zum besseren Verständnis des Mensch-Umweltsystems
  • Modellierung von raum-zeitlichen Änderungen der Umwelt und Bewertung der Einflüsse auf Menschen und Ökosysteme 
  • Wissensbasierte Kombination von Geoinformationen und Fernerkundungsdaten
  • Evaluierung neuer Sensortechnologien

Zeitschriftenbeiträge

The benefit of synthetically generated RapidEye and Landsat 8 data fusion time series for riparian forest disturbance monitoring
Zitatschlüssel Gaertner2016
Autor Gärtner, P. and Förster, M. and Kleinschmit, B.
Seiten 237-247
Jahr 2016
DOI doi:10.1016/j.rse.2016.01.028
Journal Remote Sensing of Environment
Jahrgang 2016
Nummer 177
Monat Januar
Verlag Elsevier
Zusammenfassung Insect defoliation causes forest disturbances with complex spatial dynamics. In order to monitor affected areas, decision makers seek but often lack information with high spatial and temporal precision. Within the context of a riparian Tugai forest disturbed by the insect Apocheima cinerarius, this study examines whether the analysis of a RapidEye time series would benefit from the availability of synthetically generated images at the spatial resolution of RapidEye and the additional temporal resolution of Landsat 8. We applied the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) to downscale Landsat 8 Normalized Difference Vegetation Index (NDVI) scenes to concurrent RapidEye NDVI scenes.We a) performed a pixel-based regression analyses in order to evaluate the quality of the synthetically created NDVI products and b) examined if forest disturbance maps producedwith synthetic images improve the accuracy of disturbance detection. The results show that the ESTARFM predictions have a sufficiently good accuracy, with a correlation coefficient between 0.878 b r b 0.919 (p b 0.001) and an average root mean square error 0.015 b RMSE b 0.024. The overall accuracy of forest disturbance detection with added synthetic images increased from 42.8% to 61.1 & 65.7% compared to the original data set. Forest recovery detection accuracy improved from 59.5% to 80.9%. The main source of error in the disturbance analysis occurs during the temporal interweaving between foliation and defoliation in spring.
Link zur Originalpublikation Download Bibtex Eintrag

Weitere Publikationen

2019

Schulz, C. and Kleinschmit, B. (2019). Zentralasiatische Tugai-Auwälder – Ein gefährdetes Ökosystem. Auenmagazin, 11-17.


2018

Holtgrave, A.-K., Förster, M., Greifeneder, F., Notarnicola, C. and Kleinschmit, B. (2018). Estimation of Soil Moisture in Vegetation-Covered Floodplains with Sentinel-1 SAR Data Using Support Vector Regression. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 85–101.


Klinke, R., Kuechly, H., Frick, A., Förster, M., Schmidt, T., Holtgrave, A.-K. a. K. B., Spengler, D. and Neumann, C. (2018). Indicator-Based Soil Moisture Monitoring ofWetlands by Utilizing Sentinel and Landsat Remote Sensing Data. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 71–84.


Heuner, M., Schröder, B., Schröder, U. and Kleinschmit, B. (2018). Contrasting elevational responses of regularly flooded 4 marsh plants in navigable estuaries. Ecohydrology & Hydrobiology, 1-17.


Luan, X., Buyantuev, A., Baur, A. H., Kleinschmit, B., Wang, H., Wei, S., Liu, M. and Xu, C. (2018). Linking greenhouse gas emissions to urban landscape structure: the relevance of spatial and thematic resolutions of land use/cover data. Landscape Ecology, 1211–1224.


Gras, P., Knuth, S., Börner, K., Marescot, L., Benhaiem, S., Aue, A., Wittstatt, U., Kleinschmit, B. and Kramer-Schadt, S. (2018). Landscape Structures Affect Risk of Canine Distemper in Urban Wildlife. Frontiers in Ecology and Evolution, 1-16.


2017

Georgi, C., Spengler, D., Itzerott, S. and Kleinschmit (2017). Automatic delineation algorithm for site-specific management zones based on satellite remote sensing data. Precision Agriculture


Neumann, C., Itzerott, S., Weiss, G., Kleinschmit, B. and Schmidtlein, S. (2017). Mapping multiple plant species abundance patterns - A multiobjective optimization procedure for combining reflectance spectroscopy and species ordination. Ecological Informatics. Elsevier, 61-76.


Ayazli, I. E., Kilic, F., Lauf, S., Kleinschmit, B. and Demir, H. (2017). Creating urban growth simulation models driven by the bosphorus bridges. Fresenius Environmental Bulletin, 113-117.


Moran, N., Nieland, S., Tintrup gen. Suntrup, G. and Kleinschmit, B. (2017). Combining machine learning and ontological data handling for multi-source classification of nature conservation areas. International Journal of Applied Earth Observation and Geoinformation, 124–133.


Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe

Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.

Fachgebiet Geoinformation in der Umweltplanung
Sekretariat EB5
Raum EB 236a
Straße des 17. Juni 145
D - 10623 Berlin
Tel.: +49 (0)30 314 - 73 29 0
Fax: +49 (0)30 314 - 23 50 7