TU Berlin

Geoinformation in der UmweltplanungFörster, Michael

Inhalt des Dokuments

zur Navigation

Dr. Michael Förster

Lupe

Wissenschaftlicher Mitarbeiter (Senior Scientist)

Tel.: +49 (0)30 / 314 - 72 79 8

E-Mail:

Raum: EB 236b
Sprechstunde: nach Vereinbarung

Lebenslauf
1975
in Burgstädt, Sachsen geboren
1996-2003
Studium der Geoökologie in Potsdam
1998/99
Studium an der University of Southampton
2003
GIS - Koordinator beim Planungsbüro Froelich & Sporbeck
2003-2008
Wissenschaftlicher Mitarbeiter am Fachgebiet für Geoinformationsverarbeitung in der Landschafts- und Umweltplanung im Institut für Landschaftsarchitektur und Umweltplanung an der Technischen Universität Berlin
seit Jan. 2009
Wissenschaftlicher Mitarbeiter (PostDoc) am Fachgebiet für Geoinformationsverarbeitung in der Landschafts- und Umweltplanung im Institut für Landschaftsarchitektur und Umweltplanung an der Technischen Universität Berlin
2010
Gastwissenschaftler an der European Academy Bolzano (EURAC), Italien (Institute for Applied Remote Sensing)
2012
Gastwissenschaftler and der Universität Utrecht, Niederlande (Department of Physical Geography)
2018
Gastwissenschaftler am Joint Research Center (JRC) in Ispra, Italien (Bioeconomy Unit)

Forschungsschwerpunkte

  • Entwicklung von Methoden zur Analyse der Dynamik von Ökosystemen aus Zeitreihen (optisch und SAR), speziell bei Degradationsprozessen oder abrupten Schäden (z.B. durch Feuer oder Stürme)
  • Relation von temporalen und spektralen Signalen zu Pflanzeneigenschaften und biophysikalischen Variablen (Xantophyll, Stickstoff, Chlorophyll und Fluoreszenz)
  • Ableitung von operationalisierbaren und flächendeckenden Umweltindikatoren, die zur effektiven Umsetzung von Managementmaßnahmen (z.B. im Rahmen der europäischen Vorgaben zu NATURA 2000) oder zum besseren Verständnis von Ökosystemen benötigt werden
  • Interaktion von Vegetationsstruktur, welche mit LiDAR oder SAR erhoben werden kann, mit spektralen Eigenschaften, welche speziell bei der Auswertung von bewaldeten Gebieten eine große Rolle spielen
  • Gemeinsame Nutzung von räumlich sehr hoch aufgelösten Daten (Drohnen) mit Satellitendaten, entweder zum Verständnis von ökohydrologischen Prozessen und speziell zum Ableiten von hydrologischen Variablen, wie Bodenfeuchtegehalt oder Interzeption

    Zeitschriftenbeiträge

    2019

    Kattenborn, T., Lopatina, J., Förster, M., Braun, A. C. and Fassnacht, F. E. (2019). UAV data as alternative to field sampling to map woody invasive species based on combined Sentinel-1 and Sentinel-2 data. Remote Sensing of Environment, 61-73.


    2018

    Holtgrave, A.-K., Förster, M., Greifeneder, F., Notarnicola, C. and Kleinschmit, B. (2018). Estimation of Soil Moisture in Vegetation-Covered Floodplains with Sentinel-1 SAR Data Using Support Vector Regression. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 85–101.


    Klinke, R., Kuechly, H., Frick, A., Förster, M., Schmidt, T., Holtgrave, A.-K. a. K. B., Spengler, D. and Neumann, C. (2018). Indicator-Based Soil Moisture Monitoring ofWetlands by Utilizing Sentinel and Landsat Remote Sensing Data. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 71–84.


    2017


    Schmidt, J., Fassnacht, F. E., Neff, C., Lausch, A., Kleinschmit, B., Förster, M. and Schmidtlein, S. (2017). Adapting a Natura 2000 field guideline for a remote sensing-based assessment of heathland conservation status. International Journal of Applied Earth Observation and Geoinformation, 61-71.


    2016

    Gärtner, P., Förster, M. and Kleinschmit, B. (2016). The benefit of synthetically generated RapidEye and Landsat 8 data fusion time series for riparian forest disturbance monitoring. Remote Sensing of Environment. Elsevier, 237-247.


    Neumann, C., Förster, M., Kleinschmit, B. and Itzerott, S. (2016). Utilizing a PLSR-Based Band-Selection Procedure for Spectral Feature Characterization of Floristic Gradients. EEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1-15.


    2015

    Clasen, A., Somers, B., Pipkins, K., Tits, L., Segl, K., Brell, M., Kleinschmit, B., Spengler, D., Lausch, A. and Förster, M. (2015). Spectral Unmixing of Forest Crown Components at Close Range, Airborne and Simulated Sentinel-2 and EnMAP Spectral Imaging Scale. remote sensing, 26.


    Baur, A. H., Lauf, S., Förster, M. and Kleinschmit, B. (2015). Estimating greenhouse gas emissions of European cities — Modeling emissions with only one spatial and one socioeconomic variable. Science of the Total Environment. Elsevier B.V., 49-58.


    Rocchini, D., Andreo, V., Förster, M., Gutierrez, A., Gillespie, W., Hauffe, H., He, K., Kleinschmit, B., Mairota, P., Marcantonio, M., Metz, M., Nagendra, H., Pareeth, S., Ponti, L., Ricotta, C., Rizzoli, A., Schaab, G., Zebisch, M., Zorer, R. and Neteler, M. (2015). Potential of remote sensing to predict species invasions: A modelling perspective. Progress in Physical Geography, 283-309.


    Weitere Veröffentlichungen

    The benefit of synthetically generated RapidEye and Landsat 8 data fusion time series for riparian forest disturbance monitoring
    Zitatschlüssel Gaertner2016
    Autor Gärtner, P. and Förster, M. and Kleinschmit, B.
    Seiten 237-247
    Jahr 2016
    DOI doi:10.1016/j.rse.2016.01.028
    Journal Remote Sensing of Environment
    Jahrgang 2016
    Nummer 177
    Monat Januar
    Verlag Elsevier
    Zusammenfassung Insect defoliation causes forest disturbances with complex spatial dynamics. In order to monitor affected areas, decision makers seek but often lack information with high spatial and temporal precision. Within the context of a riparian Tugai forest disturbed by the insect Apocheima cinerarius, this study examines whether the analysis of a RapidEye time series would benefit from the availability of synthetically generated images at the spatial resolution of RapidEye and the additional temporal resolution of Landsat 8. We applied the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) to downscale Landsat 8 Normalized Difference Vegetation Index (NDVI) scenes to concurrent RapidEye NDVI scenes.We a) performed a pixel-based regression analyses in order to evaluate the quality of the synthetically created NDVI products and b) examined if forest disturbance maps producedwith synthetic images improve the accuracy of disturbance detection. The results show that the ESTARFM predictions have a sufficiently good accuracy, with a correlation coefficient between 0.878 b r b 0.919 (p b 0.001) and an average root mean square error 0.015 b RMSE b 0.024. The overall accuracy of forest disturbance detection with added synthetic images increased from 42.8% to 61.1 & 65.7% compared to the original data set. Forest recovery detection accuracy improved from 59.5% to 80.9%. The main source of error in the disturbance analysis occurs during the temporal interweaving between foliation and defoliation in spring.
    Link zur Originalpublikation Download Bibtex Eintrag

    Navigation

    Direktzugang

    Schnellnavigation zur Seite über Nummerneingabe