TU Berlin

Geoinformation in der UmweltplanungFörster, Michael

Inhalt des Dokuments

zur Navigation

Dr. Michael Förster

Lupe

Wissenschaftlicher Mitarbeiter (Senior Scientist)

Tel.: +49 (0)30 / 314 - 72 79 8

E-Mail:

Raum: EB 236b
Sprechstunde: nach Vereinbarung

Lebenslauf
1975
in Burgstädt, Sachsen geboren
1996-2003
Studium der Geoökologie in Potsdam
1998/99
Studium an der University of Southampton
2003
GIS - Koordinator beim Planungsbüro Froelich & Sporbeck
2003-2008
Wissenschaftlicher Mitarbeiter am Fachgebiet für Geoinformationsverarbeitung in der Landschafts- und Umweltplanung im Institut für Landschaftsarchitektur und Umweltplanung an der Technischen Universität Berlin
seit Jan. 2009
Wissenschaftlicher Mitarbeiter (PostDoc) am Fachgebiet für Geoinformationsverarbeitung in der Landschafts- und Umweltplanung im Institut für Landschaftsarchitektur und Umweltplanung an der Technischen Universität Berlin
2010
Gastwissenschaftler an der European Academy Bolzano (EURAC), Italien (Institute for Applied Remote Sensing)
2012
Gastwissenschaftler and der Universität Utrecht, Niederlande (Department of Physical Geography)
2018
Gastwissenschaftler am Joint Research Center (JRC) in Ispra, Italien (Bioeconomy Unit)

Forschungsschwerpunkte

  • Entwicklung von Methoden zur Analyse der Dynamik von Ökosystemen aus Zeitreihen (optisch und SAR), speziell bei Degradationsprozessen oder abrupten Schäden (z.B. durch Feuer oder Stürme)
  • Relation von temporalen und spektralen Signalen zu Pflanzeneigenschaften und biophysikalischen Variablen (Xantophyll, Stickstoff, Chlorophyll und Fluoreszenz)
  • Ableitung von operationalisierbaren und flächendeckenden Umweltindikatoren, die zur effektiven Umsetzung von Managementmaßnahmen (z.B. im Rahmen der europäischen Vorgaben zu NATURA 2000) oder zum besseren Verständnis von Ökosystemen benötigt werden
  • Interaktion von Vegetationsstruktur, welche mit LiDAR oder SAR erhoben werden kann, mit spektralen Eigenschaften, welche speziell bei der Auswertung von bewaldeten Gebieten eine große Rolle spielen
  • Gemeinsame Nutzung von räumlich sehr hoch aufgelösten Daten (Drohnen) mit Satellitendaten, entweder zum Verständnis von ökohydrologischen Prozessen und speziell zum Ableiten von hydrologischen Variablen, wie Bodenfeuchtegehalt oder Interzeption

    Zeitschriftenbeiträge

    2020

    Fersch, B., Francke, T., Heistermann, M., Schrön, M., Döpper, V., Jakobi, J., Baroni, G., Blume, T., Bogena, H., Budach, C., Gränzig, T., Förster, M., Güntner, A., Hendricks Franssen, H., Kasner, M., Köhli, M., Kleinschmit, B., Kunstmann, H., Patil, A., Rasche, D., Scheiffele, L., Schmidt, U., Szulc-Seyfried, S., Weimar, J., Zacharias, S., Zreda, M., Heber, B., Kiese, R., Mares, V., Mollenhauer, H., Völksch, I. and Oswald, S. (2020). A dense network of cosmic-ray neutron sensors for soil moisture observation in a highly instrumented pre-Alpine headwater catchment in Germany. Earth System Science Data, 2289-2309.


    Fenske, K., Feilhauer, H., Förster, M., Stellmes, M. and Waske, B. (2020). Hierarchical classification with subsequent aggregation of heathland habitats using an intra-annual RapidEye time-series. International Journal of Applied Earth Observation and Geoinformation, 1-13.


    Döpper, V., Gränzig, T., Kleinschmit, B. and Förster, M. (2020). Challenges in UAS-Based TIR Imagery Processing: Image Alignment and Uncertainty Quantification.. remote sensing, 1-22.


    2019

    Kattenborn, T., Lopatina, J., Förster, M., Braun, A. C. and Fassnacht, F. E. (2019). UAV data as alternative to field sampling to map woody invasive species based on combined Sentinel-1 and Sentinel-2 data. Remote Sensing of Environment, 61-73.


    2018

    Holtgrave, A.-K., Förster, M., Greifeneder, F., Notarnicola, C. and Kleinschmit, B. (2018). Estimation of Soil Moisture in Vegetation-Covered Floodplains with Sentinel-1 SAR Data Using Support Vector Regression. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 85–101.


    Klinke, R., Kuechly, H., Frick, A., Förster, M., Schmidt, T., Holtgrave, A.-K. a. K. B., Spengler, D. and Neumann, C. (2018). Indicator-Based Soil Moisture Monitoring ofWetlands by Utilizing Sentinel and Landsat Remote Sensing Data. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 71–84.


    2017


    Schmidt, J., Fassnacht, F. E., Neff, C., Lausch, A., Kleinschmit, B., Förster, M. and Schmidtlein, S. (2017). Adapting a Natura 2000 field guideline for a remote sensing-based assessment of heathland conservation status. International Journal of Applied Earth Observation and Geoinformation, 61-71.


    2016

    Gärtner, P., Förster, M. and Kleinschmit, B. (2016). The benefit of synthetically generated RapidEye and Landsat 8 data fusion time series for riparian forest disturbance monitoring. Remote Sensing of Environment. Elsevier, 237-247.


    Neumann, C., Förster, M., Kleinschmit, B. and Itzerott, S. (2016). Utilizing a PLSR-Based Band-Selection Procedure for Spectral Feature Characterization of Floristic Gradients. EEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1-15.


    Weitere Veröffentlichungen

    A dense network of cosmic-ray neutron sensors for soil moisture observation in a highly instrumented pre-Alpine headwater catchment in Germany
    Zitatschlüssel Fersch2020
    Autor Fersch, B. and Francke, T. and Heistermann, M. and Schrön, M. and Döpper, V. and Jakobi, J. and Baroni, G. and Blume, T. and Bogena, H. and Budach, C. and Gränzig, T. and Förster, M. and Güntner, A. and Hendricks Franssen, H.J. and Kasner, M. and Köhli, M. and Kleinschmit, B. and Kunstmann, H. and Patil, A. and Rasche, D. and Scheiffele, L. and Schmidt, U. and Szulc-Seyfried, S. and Weimar, J. and Zacharias, S. and Zreda, M. and Heber, B. and Kiese, R. and Mares, V. and Mollenhauer, H. and Völksch, I. and Oswald, S.
    Seiten 2289-2309
    Jahr 2020
    ISSN 1866-3508
    DOI https://doi.org/10.5194/essd-12-2289-2020
    Journal Earth System Science Data
    Jahrgang 12
    Zusammenfassung Monitoring soil moisture is still a challenge: it varies strongly in space and time and at various scales while conventional sensors typically suffer from small spatial support. With a sensor footprint up to several hectares, cosmic-ray neutron sensing (CRNS) is a modern technology to address that challenge. So far, the CRNS method has typically been applied with single sensors or in sparse national-scale networks. This study presents, for the first time, a dense network of 24 CRNS stations that covered, from May to July 2019, an area of just 1 km2: the pre-Alpine Rott headwater catchment in Southern Germany, which is characterized by strong soil moisture gradients in a heterogeneous landscape with forests and grasslands. With substantially overlapping sensor footprints, this network was designed to study root-zone soil moisture dynamics at the catchment scale. The observations of the dense CRNS network were complemented by extensive measurements that allow users to study soil moisture variability at various spatial scales: roving (mobile) CRNS units, remotely sensed thermal images from unmanned areal systems (UASs), permanent and temporary wireless sensor networks, profile probes, and comprehensive manual soil sampling. Since neutron counts are also affected by hydrogen pools other than soil moisture, vegetation biomass was monitored in forest and grassland patches, as well as meteorological variables; discharge and groundwater tables were recorded to support hydrological modeling experiments. As a result, we provide a unique and comprehensive data set to several research communities: to those who investigate the retrieval of soil moisture from cosmic-ray neutron sensing, to those who study the variability of soil moisture at different spatiotemporal scales, and to those who intend to better understand the role of root-zone soil moisture dynamics in the context of catchment and groundwater hydrology, as well as land–atmosphere exchange processes. The data set is available through the EUDAT Collaborative Data Infrastructure and is split into two subsets: https://doi.org/10.23728/b2share.282675586fb94f44ab2fd09da0856883 [Titel anhand dieser DOI in Citavi-Projekt übernehmen] (Fersch et al., 2020a) and https://doi.org/10.23728/b2share.bd89f066c26a4507ad654e994153358b [Titel anhand dieser DOI in Citavi-Projekt übernehmen] (Fersch et al., 2020b).
    Typ der Publikation Kleinschmit
    Download Bibtex Eintrag

    Navigation

    Direktzugang

    Schnellnavigation zur Seite über Nummerneingabe