direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Dr. Michael Förster

Lupe [1]

Wissenschaftlicher Mitarbeiter (Senior Scientist)

Tel.: +49 (0)30 / 314 - 72 79 8

E-Mail: michael.foerster(at)tu-berlin.de [2]

Raum: EB 236b
Sprechstunde: nach Vereinbarung

Lebenslauf
1975
in Burgstädt, Sachsen geboren
1996-2003
Studium der Geoökologie in Potsdam
1998/99
Studium an der University of Southampton
2003
GIS - Koordinator beim Planungsbüro Froelich & Sporbeck
2003-2008
Wissenschaftlicher Mitarbeiter am Fachgebiet für Geoinformationsverarbeitung in der Landschafts- und Umweltplanung im Institut für Landschaftsarchitektur und Umweltplanung an der Technischen Universität Berlin
seit Jan. 2009
Wissenschaftlicher Mitarbeiter (PostDoc) am Fachgebiet für Geoinformationsverarbeitung in der Landschafts- und Umweltplanung im Institut für Landschaftsarchitektur und Umweltplanung an der Technischen Universität Berlin
2010
Gastwissenschaftler an der European Academy Bolzano (EURAC), Italien (Institute for Applied Remote Sensing)
2012
Gastwissenschaftler and der Universität Utrecht, Niederlande (Department of Physical Geography)
2018
Gastwissenschaftler am Joint Research Center (JRC) in Ispra, Italien (Bioeconomy Unit)

Forschungsschwerpunkte

  • Entwicklung von Methoden zur Analyse der Dynamik von Ökosystemen aus Zeitreihen (optisch und SAR), speziell bei Degradationsprozessen oder abrupten Schäden (z.B. durch Feuer oder Stürme)
  • Relation von temporalen und spektralen Signalen zu Pflanzeneigenschaften und biophysikalischen Variablen (Xantophyll, Stickstoff, Chlorophyll und Fluoreszenz)
  • Ableitung von operationalisierbaren und flächendeckenden Umweltindikatoren, die zur effektiven Umsetzung von Managementmaßnahmen (z.B. im Rahmen der europäischen Vorgaben zu NATURA 2000) oder zum besseren Verständnis von Ökosystemen benötigt werden
  • Interaktion von Vegetationsstruktur, welche mit LiDAR oder SAR erhoben werden kann, mit spektralen Eigenschaften, welche speziell bei der Auswertung von bewaldeten Gebieten eine große Rolle spielen
  • Gemeinsame Nutzung von räumlich sehr hoch aufgelösten Daten (Drohnen) mit Satellitendaten, entweder zum Verständnis von ökohydrologischen Prozessen und speziell zum Ableiten von hydrologischen Variablen, wie Bodenfeuchtegehalt oder Interzeption

    Publikationen

    • Zeitschriftenbeiträge
    • Weitere Veröffentlichungen

    Zeitschriftenbeiträge

    UAV data as alternative to field sampling to map woody invasive species based on combined Sentinel-1 and Sentinel-2 data
    Zitatschlüssel Kattenborn20190
    Autor Kattenborn, T. and Lopatina, J. and Förster, M. and Braun, A. C. and Fassnacht, F. E.
    Seiten 61-73
    Jahr 2019
    Journal Remote Sensing of Environment
    Jahrgang 227
    Nummer 2019
    Zusammenfassung Invasive plant species can pose major threats to biodiversity, ecosystem functioning and services. Satellite based remote sensing has evolved as an important technology to spatially map the occurrence of invasive species in space and time. With the new era of the Sentinel missions, Synthetic Aperture Radar (SAR) and multispectral data are now freely available and repeatedly acquired on a high spatial and temporal resolution for the entire globe. However, the high potential of such sensors for automatic mapping procedures cannot be fully harnessed without sufficient and appropriate reference data for model calibration. Reference data are commonly acquired in field surveys, which however, are often relatively expensive and affected by sampling and observer bias. Moreover, a direct transferability to the remote sensing perspective and scale is difficult. Accordingly, we firstly assess the potential of Unmanned Aerial Vehicles (UAV) for semi-automatic reference data acquisition on species cover of three woody invasive species Pinus radiata, Ulex europaeus and Acacia dealbata occurring in Chile. Secondly, we test the upscaling of the estimated species cover to the spatial scale of Sentinel-1 and Sentinel-2. The proposed workflow includes the visual sampling of respective canopies in UAV orthomosaics and the subsequent spatial extrapolations using MaxEnt with spectral (RGB, Hyperspectral), textural (2D) and canopy structural (3D) predictors derived from UAV-based photogrammetry. These UAV-based maps are then used to train random forest models with multitemporal Sentinel-1 and Sentinel-2 data to map the invasive species cover on large spatial scales. Our results show that the semi-automatic UAV-based mapping of the three invasive species results in accurate predictions. Depending on the predictor combination, the correlation was 0.70, 0.77 and 0.90 for Pinus radiatia, Ulex europaeus, Acacia dealbata, respectively. Among the three species, we observed clear differences in the model performance between the tested photogrammetric predictors and their combinations (spectral, 2D texture or 3D structure). For scaling up the UAV-based estimates to the satellite-scale, the Sentinel-2 data (multispectral) were more important than Sentinel-1 data (SAR). An independent validation revealed that the R2 of the upscaling accounted for 0.78 or higher for all species and RMSE lower than 12%. Our results hence demonstrate that UAV-based reference data acquisitions are a promising alternative to traditional field surveys if the target species are directly identifiable in the UAV data.
    Link zur Originalpublikation [3] Download Bibtex Eintrag [4]

    Weitere Veröffentlichungen

    vor >> [14]

    2019

    Kattenborn, T., Lopatina, J., Förster, M., Braun, A. C. and Fassnacht, F. E. (2019). UAV data as alternative to field sampling to map woody invasive species based on combined Sentinel-1 and Sentinel-2 data [15]. Remote Sensing of Environment, 61-73.


    2018

    Holtgrave, A.-K., Förster, M., Greifeneder, F., Notarnicola, C. and Kleinschmit, B. (2018). Estimation of Soil Moisture in Vegetation-Covered Floodplains with Sentinel-1 SAR Data Using Support Vector Regression [16]. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 85–101.


    Klinke, R., Kuechly, H., Frick, A., Förster, M., Schmidt, T., Holtgrave, A.-K. a. K. B., Spengler, D. and Neumann, C. (2018). Indicator-Based Soil Moisture Monitoring ofWetlands by Utilizing Sentinel and Landsat Remote Sensing Data [17]. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 71–84.


    2017

    Möller, M., Gerstmann, H., Gao, F., Dahms, T. C. and Förster, M. (2017). Coupling of phenological information and simulated vegetation index time series: Limitations and potentials for the assessment and monitoring of soil erosion risk [18]. Catena, 192-205.


    Schmidt, J., Fassnacht, F. E., Neff, C., Lausch, A., Kleinschmit, B., Förster, M. and Schmidtlein, S. (2017). Adapting a Natura 2000 field guideline for a remote sensing-based assessment of heathland conservation status [19]. International Journal of Applied Earth Observation and Geoinformation, 61-71.


    2016

    Gärtner, P., Förster, M. and Kleinschmit, B. (2016). The benefit of synthetically generated RapidEye and Landsat 8 data fusion time series for riparian forest disturbance monitoring [20]. Remote Sensing of Environment. Elsevier, 237-247.


    2015

    Baur, A. H., Lauf, S., Förster, M. and Kleinschmit, B. (2015). Estimating greenhouse gas emissions of European cities — Modeling emissions with only one spatial and one socioeconomic variable [21]. Science of the Total Environment. Elsevier B.V., 49-58.


    Rocchini, D., Andreo, V., Förster, M., Gutierrez, A., Gillespie, W., Hauffe, H., He, K., Kleinschmit, B., Mairota, P., Marcantonio, M., Metz, M., Nagendra, H., Pareeth, S., Ponti, L., Ricotta, C., Rizzoli, A., Schaab, G., Zebisch, M., Zorer, R. and Neteler, M. (2015). Potential of remote sensing to predict species invasions: A modelling perspective [22]. Progress in Physical Geography, 283-309.


    Nieland, S., Moran, N., Kleinschmit, B. and Förster, M. (2015). An ontological system for interoperable spatial generalisation in biodiversity monitoring [23]. Computers & Geosciences, 86-95.


    Baur, A. H., Förster, M. and Kleinschmit, B. (2015). The spatial dimension of urban greenhouse gas emissions: analyzing the influence of spatial structures and LULC patterns in European cities [24]. Landscape Ecology. Springer.


    vor >> [33]

    Fachgebiet Geoinformation in der Umweltplanung
    Sekretariat EB5
    Raum EB 236a
    Straße des 17. Juni 145
    D - 10623 Berlin
    Tel.: +49 (0)30 314 - 73 29 0
    Fax: +49 (0)30 314 - 23 50 7
    E-Mail-Anfrage [34]
    ------ Links: ------

    Zusatzinformationen / Extras

    Direktzugang

    Schnellnavigation zur Seite über Nummerneingabe

    Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.
    Copyright TU Berlin 2008